DISK-HOMOGENEOUS RIEMANNIAN MANIFOLDS

SUNGYUN LEE

ABSTRACT. We introduce the notion of strongly k-disk homogeneous space and establish a characterization theorem. More specifically, we prove that any analytic Riemannian manifold (M,g) of dimension n which is strongly k-disk homogeneous with $2 \le k \le n-1$ is a space of constant curvature. Its Kähler analog is obtained. The total mean curvature homogeneity of geodesic sphere in k-disk is also considered.

1. introduction

Let (M,g) be an analytic Riemannian manifold of dimension n, and let i(m) denote the injectivity radius at a point $m \in M$. We shall denote by $B_m(r)$ the geodesic ball with center m and radius r < i(m) in (M,g). For any unit vector $x \in T_m M$, we shall denote by $D_m^x(r)$ the geodesic disk with center m and radius r < i(m) which is perpendicular to x. Further, we shall denote by $V_m(r)$ the n-dimensional volume of $B_m(r)$ and by $V_m^x(r)$ the (n-1)-dimensional volume of $D_m^x(r)$. The Riemannian manifold (M,g) will be said to be disk-homogeneous if, at each point $m \in M$, $V_m^x(r)$ does not depend on the unit vector $x \in T_m M$, and (M,g) will be said to be strongly disk-homogeneous if it is disk-homogeneous at each point $m \in M$ and if, in addition, $V_m^x(r)$ does not depend on the point of $m \in M$. The Euclidean space and any rank one symmetric space are strongly disk-homogeneous. The converse for low dimensional cases was considered in [5]. In fact Kowalski and Vanhecke proved the following theorem.

Received September 14, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 53C21, 53B21.

Key words and phrases: geodesic disk, disk-homogeneous space, series expansion for volume.

This research is supported by KOSEF and KAIST.

Sungyun Lee

THEOREM 1.1. Any Riemannian manifold of dimension ≤ 4 which is strongly disk-homogeneous is either locally Euclidean, or it is locally isometric to a rank one symmetric space.

It is the purpose of this paper to introduce the notion of strongly k-disk homogeneous space and to establish the similar characterization as Theorem 1.1. For a k-dimensional subspace of T_mM at a point $m \in M$ generated by a set $\{e_1, \ldots, e_k\}$ of orthonormal vectors, we shall denote by $D_m^k(r; e_1, \ldots, e_k)$ the geodesic k-disk with center m which is given by

$$D_m^k(r;e_1,\ldots,e_k)=\{p\in M:d(p,m)\leq r\}\cap \exp_m(\operatorname{Span}\{e_1,\ldots,e_k\}),$$

where $\exp_m: T_mM \to M$ is the exponential map at m. Further, we shall denote by $V_m^k(r; e_1, \ldots, e_k)$ the k-dimensional volume of $D_m^k(r; e_1, \ldots, e_k)$. (M, g) will be said to be strongly k-disk homogeneous if $V_m^k(r; e_1, \ldots, e_k)$ does not depend on the choice of $\{e_1, \ldots, e_k\}$ or on the point of $m \in M$. Note that a strongly (n-1)-disk homogeneous space is a strongly disk-homogeneous space in the usual sense. Then the main result of this paper is stated as follows.

THEOREM 1.2. Any analytic Riemannian manifold (M, g) of dimension n which is strongly k-disk homogeneous for $2 \le k \le n-2$ is a space of constant curvature.

Theorem 1.2 is proved in $\S 3$ after reviewing some preliminaries in $\S 2$. The Kähler analog of Theorem 1.2 is proved in $\S 4$, and the total mean curvature homogeneity of geodesic sphere in k-disk is considered in $\S 5$.

2. Preliminaries

Let (M,g) be an n-dimensional Riemannian manifold of class C^{ω} and let $m \in M$. Let r > 0 be so small that the exponential map \exp_m is defined on a ball of radius r in the tangent space T_mM . Further, let (x_1,\ldots,x_n) be a system of normal coordinates of M at m such that $\{\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}\}$ at m forms an orthonormal basis $\{e_1,\ldots,e_n\}$ of T_mM , and ω the volume form of M, defined locally up to a sign. We write

$$g_{pq} = g\left(\frac{\partial}{\partial x_p}, \frac{\partial}{\partial x_q}\right), \qquad \omega_{1...n} = \omega\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right).$$

Disk-homogeneous Riemannian manifolds

Then $g_{pq}(m) = \delta_{pq}$. In [3] the following power series expansion is derived for g_{pq} :

(2.1)
$$g_{pq}$$

= $\delta_{pq} - \frac{1}{3} \sum_{i,j=1}^{n} R_{ipjq}(m) x_i x_j - \frac{1}{6} \sum_{i,j=1}^{n} \nabla_i R_{jpkq}(m) x_i x_j x_k + \cdots,$

where ∇ and R are the Riemannian connection and the Riemannian curvature tensor of M respectively. We also denote the Ricci tensor and the scalar curvature tensor by ρ and τ , respectively. The power series expansions for $\omega_{1...n}$ and for the volume $S_m(r)$ of the geodesic sphere $G_m(r) = \{p \in M : d(m,p) = r\}$ are derived in [3]. For our purpose we need the power series expansion of the geodesic k-disk $D_m^k(r; e_1, \ldots, e_k)$. To this end we will use the results and the methods of derivation in [3]. Let $\tilde{\omega}$ be the induced volume form on $D_m^k(r; e_1, \ldots, e_k)$ and write

$$\tilde{\omega}_{1\cdots k} = \tilde{\omega}\left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_k}\right).$$

Since

(2.2)
$$\tilde{\omega}_{1\cdots k}^2 = \det \begin{bmatrix} g_{11} & \cdots & g_{1k} \\ g_{21} & \cdots & g_{2k} \\ & \cdots & \\ g_{k1} & \cdots & g_{kk} \end{bmatrix},$$

we get the power series expansion for $\tilde{\omega}_{1\cdots k}$ by combining (2.1) and (2.2)

$$(2.3) \ \tilde{\omega}_{1\cdots k} = 1 - \frac{1}{6} \sum_{i,j=1}^{k} (R_{1i1j} + R_{2i2j} + \cdots + R_{kikj})(m) x_i x_j + \cdots.$$

Note that

$$(2.4) \quad V_m^k(r; e_1, \dots, e_k) = \int_0^r \int_{S^{k-1}(1)} r^{k-1} \tilde{\omega}_{1\cdots k}(\exp_m(tu)) \, du \, dt.$$

We can expand $\tilde{\omega}_{1\cdots k}(\exp_m(ru))$ in a power series in r, where the coefficients are homogeneous polynomials in the $a_i = x_i/r$. Thus

$$\tilde{\omega}_{1\cdots k}(\exp_m(ru)) = 1 - \frac{1}{6} \left(\sum_{i,i=1}^k (R_{1i1j} + R_{2i2j} + \cdots + R_{kikj})(m) a_i a_j \right) r^2 + \cdots.$$

Furthermore,

(2.5)
$$\int_{S^{k-1}(1)} 1 \, du = \text{volume}(S^{k-1}(1)) = 2\Gamma(\frac{1}{2})^k \Gamma(\frac{k}{2})^{-1}.$$

Next

$$\sum_{i,j=1}^{k} \int_{S^{k-1}(1)} (R_{1i1j} + R_{2i2j} + \dots + R_{kikj})(m) a_i a_j du$$

$$= \sum_{i=1}^{k} (R_{1i1i} + R_{2i2i} + \dots + R_{kiki})(m) \int_{S^{k-1}(1)} a_i^2 du$$

$$= \frac{2}{k} \Gamma(\frac{1}{2})^k \Gamma(\frac{k}{2})^{-1} \sum_{i=1}^{k} (R_{1i1i} + R_{2i2i} + \dots + R_{kiki})(m),$$

because $a_1^2 + \cdots + a_k^2 = 1$. Thus we have the power series expansion

(2.6)
$$V_m^k(r; e_1, \dots, e_k)$$

= $\frac{\alpha_k r^k}{k} \left\{ 1 - \frac{1}{6(k+2)} \left(\sum_{i=1}^k (R_{1i1i} + R_{2i2i} + \dots + R_{kiki})(m) \right) r^2 + \dots \right\},$
where α_k is given by (2.5).

3. Characterization of disk homogeneous Riemannian manifold

In this section we prove Theorem 1.2 which characterizes a disk-homogeneous Riemannian manifold.

Proof. We only do the case k=4 since the other cases are similar. From the assumption that M is strongly k-disk homogeneous we see that the coefficient of r^{k+2} in (2.6) is independent of m and $\{e_1, \dots, e_k\}$. Thus by replacing the index k=4 to j and summing up over $4 \leq j \leq n$ we get

(3.1)
$$(n-5)(R_{1212} + R_{1313} + R_{2323})(m) + 2(\rho_{11} + \rho_{22} + \rho_{33})(m)$$
= constant.

Disk-homogeneous Riemannian manifolds

Similarly, replacing the index 3 to j in (3.1) and summing up over $3 \le j \le n$, we get

(3.2)
$$(n-5)(n-4)R_{1212}(m) + 2(n-4)(\rho_{11} + \rho_{22})(m) + \tau(m)$$
= constant.

Once again we get from (3.2)

(3.3)
$$(n-4)(n-3)\rho_{11}(m) + \tau(m) = \text{constant}.$$

Finally we obtain from (3.3)

(3.4)
$$\tau(m) = \text{constant.}$$

Then the relations (3.1)–(3.4) and the strongly k-disk homogeneous assumption lead us to conclude that

(3.5)
$$\rho_{ii}(m) = \text{constant}, \quad R_{ijij}(m) = \text{constant}, \quad 1 \leq i, j \leq n.$$
 This completes the proof of Theorem 1.2.

4. Real and complex disk homogeneous Kähler manifold

In this section we consider the Kähler analog of Theorem 1.2. Let M be a Kähler manifold of complex dimension n with the almost complex structure J. We shall say that M is strongly real k-disk homogeneous if the volume of geodesic k-disk of radius r does not depend on the center m or the real k-frame generating the geodesic k-disk. Similarly M is called strongly complex k-disk homogeneous if the volume of geodesic 2k-disk of radius r does not depend on the center m or the complex k-frame generating the geodesic 2k-disk. In terms of an orthonormal basis $\{e_1, Je_1, \ldots, e_n, Je_n\}$ (or briefly $\{e_1, e_1*, \ldots, e_n, e_n*\}$) of T_mM , this implies that if M is strongly real k-disk homogeneous then $V_m^k(r; e_{i_1}, \ldots, e_{i_k})$ does not depend on the choice of k-frame $\{e_{i_1}, \ldots, e_{i_k}\}$ or the point of $m \in M$. Similarly, if M is strongly complex k-disk homogeneous, then $V_m^{2k}(r; e_{i_1}, e_{i_1}*, \ldots, e_{i_k}, e_{i_k}*)$ does not depend on the choice of 2k-frame $\{e_{i_1}, e_{i_1}*, \ldots, e_{i_k}, e_{i_k}*\}$ or the point of $m \in M$.

THEOREM 4.1. Let M be a Kähler manifold of complex dimension n and suppose that M is strongly real and complex k-disk homogeneous for $2 \le k \le n-1$. Then M has constant holomorphic sectional curvature.

Sungyun Lee

Proof. We only prove the case k=3 since the other cases are similar. From the assumption that M is strongly real 3-disk homogeneous we see that the coefficient

$$\sum_{i=1}^{3} (R_{1i1i} + R_{2i2i} + R_{3i3i})$$

of r^5 in (2.6) with k=3 is constant. Thus, by replacing the index 3 to j and summing up over $3 \le j \le n$, we get

$$(4.1) \quad (n-3)R_{1212} + (R_{1212} + R_{1313} + \dots + R_{1n1n}) = \text{constant}.$$

It follows that

(4.2)
$$R_{1212} + R_{1313} + \cdots + R_{1n1n} = \text{constant}, \quad R_{1212} = \text{constant}.$$

This implies that any anti-holomorphic sectional curvature

(4.3)
$$R_{ijij} = \text{constant}, \ 1 \le i \ne j \le n.$$

Next from the assumption that M is strongly complex 3-disk homogeneous we see that

(4.4)
$$\sum_{i,j=1}^{3} (R_{ijij} + R_{ij^*ij^*} + R_{i^*ji^*j} + R_{i^*j^*i^*j^*}) = \text{constant}.$$

Combining (4.3) and (4.4) we obtain

$$(4.5) R_{11^{\bullet}11^{\bullet}} + R_{22^{\bullet}22^{\bullet}} + R_{33^{\bullet}33^{\bullet}} = \text{constant}$$

which gives subsequently

$$(4.6) \quad (n-3)(R_{11^{\bullet}11^{\bullet}} + R_{22^{\bullet}22^{\bullet}}) + (R_{11^{\bullet}11^{\bullet}} + \cdots + R_{nn^{\bullet}nn^{\bullet}}) = \text{constant},$$

$$(4.7) \quad (n-3)R_{11^{\bullet}11^{\bullet}} + 2(R_{11^{\bullet}11^{\bullet}} + \cdots + R_{nn^{\bullet}nn^{\bullet}}) = \text{constant},$$

$$(4.8) R_{11^{\bullet}11^{\bullet}} + \cdots + R_{nn^{\bullet}nn^{\bullet}} = \text{constant}.$$

From (4.7) and (4.8), we get $R_{11^*11^*}$ = constant which implies

$$(4.9) R_{ii^*ii^*} = \text{constant}, \ 1 \le i \le n.$$

Thus M has constant holomorphic sectional curvature.

Disk-homogeneous Riemannian manifolds

5. Total mean curvature homogeneity of geodesic (k-1)spheres

In this section we consider the total mean curvature homogeneity of geodesic sphere in k-disk. The power series expansion for the mean curvature at the point $\exp_m(ru)$ of the geodesic (k-1)-sphere $S_m^{k-1}(r;e_1,\ldots,e_k)$ in $D_m^k(\bar{r};e_1,\ldots,e_k)$ is given by

$$(5.1) h(\exp_m(ru)) = \frac{1}{k-1} \left\{ \frac{k-1}{r} - \frac{r}{3} \sum_{i,j=1}^k \rho_{ij} a_i a_j + \cdots \right\} (m),$$

where

(5.2)
$$u = \sum_{i=1}^{k} a_i \frac{\partial}{\partial x_i} \quad \text{and} \quad \sum_{i=1}^{k} a_i^2 = 1.$$

The total mean curvature $H_m^k(r; e_1, \dots, e_k)$ of the geodesic (k-1)-sphere $S_m^{k-1}(r; e_1, \dots, e_k)$ in $D_m^k(\bar{r}; e_1, \dots, e_k)$ is given by

(5.3)
$$H_m^k(r; e_1, \dots, e_k) = r^{k-1} \int_{S^{k-1}(1)} (h^{k-1} \tilde{\omega}_{1 \dots k}) (\exp_m(ru)) du.$$

Thus the power series expansion for the total mean curvature $H_m^k(r; e_1, \dots, e_k)$ is given by

(5.4)
$$H_m^k(r; e_1, \dots, e_k)$$

= $c_{k-1} \left\{ 1 - \frac{1}{2k} \left(\sum_{i=1}^k (R_{1i1i} + R_{2i2i} + \dots + R_{kiki})(m) \right) r^2 + \dots \right\}.$

Then we have the following theorem from the proof of Theorem 1.2 in §3.

THEOREM 5.1. Let M be a Riemannian manifold of dimension n and suppose that for all $m \in M$ and all sufficiently small r the geodesic (k-1)-sphere $S_m^{k-1}(r; e_1, \ldots, e_k)$ in $D_m^k(\bar{r}; e_1, \ldots, e_k)$ has the total mean curvature $H_m^k(r; e_1, \cdots, e_k)$ independent of m and $\{e_1, \ldots, e_k\}$. Then M has constant sectional curvature.

Sungyun Lee

Réferences

- [1] B. Y. CHEN AND L. VANHECKE, Total curvatures of geodesic spheres, Arch. Math. 32 (1979), 404-411.
- [2] _____, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28-67.
- [3] A. GRAY, The volume of small geodesic ball in a Riemannian manifold, Michigan Math. J. 20 (1973), 329-344.
- [4] A. GRAY AND L. VANHECKE, Riemannian geometry as determined by the volumes of small geodesic balls, Acta. Math. 142 (1979), 157-198.
- [5] O. KOWALSKI AND L. VANHECKE, Ball-homogeneous and disk-homogeneous Riemannian manifolds, Math. Z. 180 (1982), 429-444.

DEPARTMENT OF MATHEMATICS, KAIST, TAEJON 305-701, KOREA *E-mail*: sylee@mathx.kaist.ac.kr