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DISK-HOMOGENEOUS RIEMANNIAN MANIFOLDS
SUNGYUN LEE

ABSTRACT. We introduce the notion of strongly k-disk homogeneous
space and establish a characterization theorem. More specifically, we
prove that any analytic Riemannian manifold (M, g) of dimension n
which is strongly k-disk homogeneous with 2 < k < n — 1 is a space
of constant curvature. Its Kéhler analog is obtained. The total mean
curvature homogeneity of geodesic sphere in k-disk is also considered.

1. introduction

Let (M, g) be an analytic Riemannian manifold of dimension n, and
let i(m) denote the injectivity radius at a point m € M. We shall denote
by Bn(r) the geodesic ball with center m and radius r < i(m) in (M, g).
For any unit vector z € T, M, we shall denote by DZ(r) the geodesic
disk with center m and radius r < i(m) which is perpendicular to z.
Further, we shall denote by V,,(r) the n-dimensional volume of B,.(r)
and by V3(r) the (n — 1)-dimensional volume of DZ (r). The Riemannian
manifold (M, g) will be said to be disk:homogeneous if, at each point
m € M, V(r) does not depend on the unit vector = € T,,M, and (M, g)
will be said to be strongly disk-homogeneous if it is disk-homogeneous at
each point m € M and if, in addition, VZ(r) does not depend on the
point of m € M. The Euclidean space and any rank one symmetric
space are strongly disk-homogeneous. The eonverse for low dimensional
cases was considered in [5]. In fact Kowalski and Vanhecke proved the
following theorem.
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THEOREM 1.1. Any Riemannian manifold of dimension < 4 which
is strongly disk-homogeneous is either locally Euclidean, or it is locally
isometric to a rank one symmetric space.

It is the purpose of this paper to introduce the notion of strongly k-
disk homogeneous space and to establish the similar characterization as
Theorem 1.1. For a k-dimensional subspace of T,,M at a point m € M
generated by a set {ey,...,ex} of orthonormal vectors, we shall denote
by DE(r;ey, ..., ex) the geodesm k-disk with center m which is given by

D (riey,...,ex) = {p€ M :d(p,m) < r}Nexp,(Span{ey,... vex})s

where exp,, : TmM — M is the exponential map at m. Further, we shall
denote by VX(r;ey,.. ., ex) the k-dimensional volume of Dk (r e, - ek)

(M, g) will be said to be strongly k-disk homogeneous if VE(r; ey, ..., ex)
does not depend on the choice of {ey, ..., e} or on the point of m € M.
Note that a strongly (n — 1)-disk homogeneous space is a strongly disk-
homogeneous space in the usual sense. Then the main result of this paper
is stated as follows.

THEOREM 1.2. Any analytic Riemannian manifold (M, g) of dimen-
sion n which is strongly k-disk homogeneous for 2 < k < n—2 is a space
of constant curvature.

Theorem 1.2 is proved in §3 after reviewing some preliminaries in §2.
The Kahler analog of Theorem 1.2 is proved in §4, and the total mean
curvature homogeneity of geodesic sphere in k-disk is considered in §5.

2. Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold of class C* and
let m € M. Let 7 > 0 be so small that the exponential map exp,, is
defined on a ball of radius r in the tangent space T,,M. Further, let
(zl, xn) be a system of normal coordinates of M at m such that
{£ B Bm at m forms an orthonormal basis {ey, ..., en} of T, M, and
w the volume form of M, defined locally up to a sign. We write

_. (2 9 o o—w(B O
9 =9 dz,’ 0z, )’ La=W oz, 0z, )
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Then gy(mn) = 8y In [3] the following power series expansion is derived
for gpg:

(2.1) g

=0~ 3 Z Ripjg(m)ziz; — = Z V; Rapkq(m)a"t%wk
zg-l nmk—l
where V and R are the Riemannian connection and the Riemannian
curvature tensor of M respectively. We also denote the Ricci tensor and
the scalar curvature tensor by p and 7, respectively. The power series
expansions for wy. ., and for the volume Sm(r) of the geodesic sphere
Gn(r) = {p € M : d(m,p) = r} are derived in [3]. For our purpose we
need the power series expansion of the geodesic k-disk DE (e, ..., e).
To this end we will use the results and the methods of derivation in [3].

Let & be the induced volume form on DX (r; ey, ..., ex) and write
uq k'— & ( 9 . -fz-) .
Oz, T Oy
Since
gu - G
(2.2) Gl =det |9 T 9|
gxr ot Gk

we get the power series expansion for &..; by combining (2.1) and (2.2)

(23) Grp=1-= Z(Rm, + Roigj + -+ + R} (m)ziz; +

13—1
Note that

@24) Vi(re,... o) = /0 /S L . (expy (t0)) dudt.

We can expand @y.4(exp,,(ru) in a power series in r, where the coeffi-
cients are homogeneous polynomials in the a; = z;/r. Thus
@r..x(expp(ru))

= (Z(ng + Rpigj + -+ + szky)(m)azay) U

)J"l
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Furthermore,
k
(2.5) / 1 du = volume(S*"}(1)) = 21"(1)’°l"(—)"1
Sk—l(l) 2 2
Next

k
Z / (Rinj + Roigj + -+ + Ruixs)(m)asa; du
,J= Sk—l(l)

k

= Z(Rlili + Roigi + - -+ + Ryixs)(m) a? du
— $k-1(1)

k
2
= —I‘ )k Z (Ruiti + Rasgi + + - - + Riars) (),

because a? + - - - + @2 = 1. Thus we have the power series expansion

(2.6) VE(rien...,ex)

k
ot 1 5 o N 2, ...
=% {1 6(k+2) (;(le + it szh)(m)) i }

where ay, is given by (2.5).

3. Characterization of disk homogeneous Riemannian mani-
fold

In this section we prove Theorem 1.2 which characterizes a disk-
homogeneous Riemannian manifold.

Proof. We only do the case k = 4 since the other cases are similar.
From the assumption that M is strongly k-disk homogeneous we see that
the coefficient of 7¥+2 in (2.6) is independent of m and {ey,--- ,e;}. Thus
by replacing the index k = 4 to j and summing up over 4 < j < n we
get

(3.1) (n — 5)(Ri212 + Rizis + Rases)(m) + 2(p11 + pa2 + pas)(m)
= constant.
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Similarly, replacing the index 3 to j in (3.1) and summing up over 3 <
J < n, we get

(3-2) (n = 5)(n ~ 4) Rizia(m) + 2(n — 4)(p11 + pa)(m) + 7(m)
= constant.

Once again we get from (3.2)

(3.3) (n = 4)(n — 3)p1(m) + 7(m) = constant.
Finally we obtain from (3.3)
(3.4) T(m) = constant.

Then the relations (3.1)-(3.4) and the strongly k-disk homogeneous as-
sumption lead us to conclude that

(3.5)  pi(m) = constant, Ry;;(m) = constant, 1<4,j<n.
This completes the proof of Theorem 1.2.. O

4. Real and complex disk homogeneous Kihler manifold

In this section we consider the Kihler analog of Theorem 1.2. Let M -
be a Kéhler manifold of complex dimension n with the almost complex
structure J. We shall say that M is strongly real k-disk homogeneous if
the volume of geodesic k-disk of radius r does not depend on the cen-
ter m or the real k-frame generating the geodesic k-disk. Similarly M
is called strongly complex k-disk homogeneous if the volume of geodesic
2k-disk of radius r does not depend on the center m or the complex k-
frame generating the geodesic 2k-disk. In terms of an orthonormal basis
{ei, Jer, ..., en, Jen} (or briefly {e1,e1%,...,€n,e,%}) of T,,M, this im-
plies that if M is strongly real k-disk homogeneous then VE(r; e, . .. ) €3)
does not depend on the choice of k-frame {e;,...,e;} or the point of
m € M. Similarly, if M is strongly complex k-disk homogeneous, then
Vk(r; e, €i%, . . . €5, €, %) does not depend on the choice of 2k-frame
{€i, €%, ..., €, e, x} or the point of m € M.

THEOREM 4.1. Let M be a Kihler manifold of complex dimension n
and suppose that M is strongly real and complex k-disk homogeneous for
2<k <n-1. Then M has constant holomorphic sectional curvature.
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Proof. We only prove the case k = 3 since the other cases are similar.
From the assumption that M is strongly real 3-disk homogeneous we see

that the coefficient
3

Z(le + Roioi + Raizi)

i=1

of 7% in (2.6) with k = 3 is constant. Thus, by replacing the index 3 to j
and summing up over 3 < j < n, we get

(4.1) (n—3)Riz2 + (Rizi2 + Risi3 + - - + Rinin) = constant.
It follows that

(4.2) Rizz + Ryz13 + -+ + Rinn = constant, Rjs0 = constant.
This implies that any anti-holomorphic sectional curvature

(4.3) R,ji; = constant, 1 <i# j<n.

Next from the assumption that M is strongly complex 3-disk homoge-
neous we see that

3
(44) Z(R,J,] + Rij'ij‘ =+ Rfi'ji‘j + -R'i‘j'i‘j‘) = constant.

ij=1

Combining (4.3) and (4.4) we obtain

(4.5) Riye110 + Raggegor + R3ze33+ = constant
which gives subsequently

(4.6) (n—3)(Run+ + Razeoor) + (R1re11+ + - - - + Runenne) = constant,
(4.7)  (n—=3)Ryn- + 2(Rypr1re + -+ + Rupenne) = constant,

(4.8) Ryy110 + - - + Rppenas = constant.
From (4.7) and (4.8), we get Rj;:13- = constant which implies
4.9 R = constant, 1 <i<n.

Thus M has constant holomorphic sectional curvature. O
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5. Total mean curvature homogeneity of geodesic (k ~ 1)-
spheres

In this section we consider the total mean curvature homogeneity of
geodesic sphere in k-disk. The power series expansion for the mean curva-
ture at the pomt exp,,(ru) of the geodesic (k—1)-sphere S’““‘(r, 1y...,€k)
in Dk (7;1,...,6x) is given by

1
(5.1) h(exp,(rv)) = -1 {“"‘"’ =3 pija:ia; + } (m),
,J==1
where
k

(5.2) u—Za, , and Za?=1.

=1 i=1
The total mean curvature HX (r;e),- - ,¢ex) of the geodesic (k ~1)-sphere
Sk=1(r.ey,...,ex) in D (F;e,...,e) is given by

(5.3) HE(r;ey,- - ,e) =r*? / (R*= 101k WexXppm(ru)) du.
Sk=1(1)

Thus the power series expansion for the total mean curvature HE(r; e,
-, ex) is given by

(5.4) H,’;,('r; €1, - ,€k)

= Cgui {1 —_— (Z(Rh” + Rggs + -+ -+ szki)(m)) 7 }

i=]

Then we have the following theorem from the proof of Theorem 1.2 in

§3.

THEOREM 5.1. Let M be a Riemannian manifold of dimension n and
suppose that for all m € M and all sufficiently small r the geodesic
(k — 1)-sphere Sk-Y(r; ey, . .., €) in DE(F;e,...,ex) has the total mean
curvature H (r;e;,- -+ ,ex) independent of m and {e,...,ex}. Then M
has constant sectional curvature.
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