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CONDITIONAL ABSTRACT WIENER
INTEGRALS OF CYLINDER FUNCTIONS

SEUNG JUN CHANG! AND DoNG MYUNG CHUNG?

ABSTRACT. In this paper, we first develop a general formula for
evaluating conditional abstract Wiener integrals of cylinder func-
tions. We next use our formula to evaluate the conditional abstract
Wiener integral of various cylinder functions and then specialize our
results to conditional Yeh-Wiener integrals to show that we can ob-
tain the corresponding results by Park and Skoug. We finally ob-
tain a Cameron-Martin translation theorem for conditional abstract
Wiener integrals.

1. Introduction and Preliminaries

Let H be a real separable infinite dimensional Hilbert space with
inner product (:,-) and norm |- |. Let B denote the completion of H
with respect to a measurable norm || - || on H. As H is identified as a
dense subspace of B, we identified the topological dual B* of B as a
dense subspace of H* ~ H in the sense that, for all y in B* and z in
H, (y,z) = (y, ), where (-,-) is the B* — B pairing. Thus we have a
triple B* C H* =~ H C B. Gross [5] proved that B carries a mean zero
Gaussian measure v, called as the abstract Wiener measure, which is
characterized by the probability measure on the Borel o —algebra B(B)
of B such that

. 1
/ ‘¥ dy(z) = exp {—§|y|2} for every ye B*.
B
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The triple (H, B, v) is called an abstract Wiener space. The integration
on B is performed with respect to v. For more details, see [5,6]. Let
R™ and C denote an n-dimensional Euclidean space and the complex
numbers, respectively.

Let @ = {(5,) : 0 < s < p, 0<¢< g} and (Ca[Q), B(C[Q]), my)
denote Yeh-Wiener space, i.e., C2[Q] denotes the Banach space {z(-, ) :
z is a real valued continuous function on @ with z(0,t) = z(s,0) = 0}
with the supremum norm and m,, denotes the Yeh-Wiener measure on
the Borel o—algebra B(C3[Q)]) of C2[Q)] (see [11]). Let Co[Q] = {z €
C2[Q] : z(s,t) = fot fs f(u,v)dudv, f € L?[Q]}; then it is a real valued
separable infinite dimensional Hilbert space with inner product

(x1,22) //D2x1(st D2x,(s, t)dsdt,

where D?z = at 5. As is well known, (C'[Q)], C2[Q],m,) is an example
of abstract Wlener spaces.

Let {e; : 7 > 1} be a complete orthonormal set in H such that e;’s
are in B*. For each h € H and z € B, let

n
(h7 :L') nll)ng'o] 1<h,6j>(€j,.7))
if the limit exists and equals zero otherwise. It is shown that for each
h(h # 0) in H, (h, ) is a Gaussian random variable on B with mean
zero, variance |h|?, and that (A, Az) = (Ak,z) = A(h, z) for all A € RL,
It is known [2,5,10] that if {h1, h2,--- ,hn} is an orthogonal set in H,
then the random variable (h,—,:z:S’s are independent, and that if B =

C:2[Q], H = C4[Q), then

(h,z) = //D2 (u, v)dz(u,v)

where fot Js D*h(u, v)dz(u, v) is the Paley-Wiener-Zygmund integral of
D2?h.
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Let A be a self-adjoint, trace class operator with eigenvalues {ax}
and the corresponding eigenvectors {ex}. Let

(z, Aa: = lim Zaj eJ, 2,

n—oo

if the limit exists and equals zero otherwise. For more details, see [5,9].

Let X be an R™-valued measurable function and Y a C-valued in-
tegrable function on (B,B(B),v). Let F(X) denote the c—algebra
generated by X. Then by the definition of conditional expectation, the
conditional expectation of Y given F(X), written E[Y|X], is any real
valued F(X)—measurable function on B such that

/Ydu=/E[Y|X]dV for E € F(X).
B E

It is well known that there exists a Borel measurable and Px —integrable
function ¢ on (R", B(R™), Px) such that E[Y|X] = ¢ o X, where B(R")
denotes the Borel o—algebra of R™ and Px is the probability distribu-
tion of X defined by Px(A) = v(X~1(A)) for A € B(R"). The function
¥(€), €€ R" is unique up to Borel null sets in R™. Following Yeh [12]
the function 1(€), written E [Y|X = €], is called the conditional abstract
Wiener integral of Y given X.

J. Yeh [11] derived several Fourier inversion formulas for conditional
Wiener integrals and then used the formulas to evaluate conditional
Wiener integrals. Recently, Park and Skoug [7,8] obtained a simple
formula for evaluating conditional Wiener and Yeh-Wiener integrals.
Chung and Kang (3] considered abstract Wiener space version of condi-
tional Wiener integrals and then obtained evaluation formula for condi-
tional abstract Wiener integral of various functions which include some
of results given in {7,8].

The purpose of this paper is to give a general formula, for evaluat-
ing conditional abstract Wiener integrals of cylinder functions which
includes as special cases results by Park and Skoug [7,8] for Wiener and
Yeh-Wiener spaces. We then use this formula to evaluate the condi-
tional abstract Wiener integral of various cylinder functions and spe-
cialize our results to conditional Yeh-Wiener integrals to show that we
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can obtain the corresponding results of Park and Skoug’s given in 8.
We finally obtain a Cameron-Martin translation theorem for conditional
abstract Wiener integrals.

2. A Formula for Conditional Abstract Wiener Integrals

In this section we give a general formula for evaluating conditional
abstract Wiener integrals of cylinder functions that includes as special
cases the results of Park and Skoug’s given in [7] and (8].

LEMMA 2.1. Let {g1,92, - ,9n} be an orthonormal set in H. Let
Y and Z be B—valued random variables defined on B by Y(z) =

T — Z;;l(gj,zjgj and Z(z) = Z?zl(gj,:cjgj. ThenY and Z are inde-
pendent.

Proof. It suffices to show that (y1, Y (z)) and (y2, Z(z)) are indepen-
dent R!—valued random variables for all y;,y2 € B*. But it is easily
shown that E[(y1,Y(x))(y2, Z(z))] = 0. So (y1,Y(z)) and (y2, Z(x))
are uncorrelated, so that they are independent. O

THEOREM 2.2. Let {g1,92, -+ ,gn} be an orthonormal set in H. Let
X : B — R" be defined by

(21) X(.’L‘) = ((91,33),(92,.’13),' v ,(gn,ib'))

Then for any integrable function F on B,

PP = = B[P (- 30010, + )

i=1

where g___ (€I’§2a T ,§'n) € R™

Proof. Since B-valued random variables z — E;le(gj,mjgj and

Z;zl(gj,xjgj are independent by Lemma 2.1, we have, using Corol-
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lary 4.38 of [1, p.80]
[ (x)l(gl, 5 = Ely o (gn’ 5 = En]

- 2[r (e 3000+ i)
= [( f:gg,w5gj+26jgj>]~

=1 =1

n n
Z 95,%)9;5 Z ng}
j=1 =1

3. Conditional Abstract Wiener Integrals of Cylinder Func-
tions

In this section we will give a general theorem by which most of the
results given in [3,4,7,8,12] are proved as corollaries.

THEOREM 3.1. Let (Y,),n) be a measure space where 7 is either
o —finite measure or a C—valued measure. Let ¢ : Y — H be Y — B(H)
measurable. Assume that F' is a C—valued Borel measurable function
on R such that F((¢(y),x)) is integrable on (Y x B,Y x B(B),n x v).
Let X be as in Theorem 2.2. If ¢ : B — C is given by

0= [ PU6),z)dna).

Then we have

(3.1)
ER( Iva) 3

2
-7 Nz [.F (“ ¥ 2 ) e"p{ 2oyl } dudn(y)
where [p,” = |¢(y)1> — 71 (6(v), )%, €= (£1,6,-++ ,&) ER™
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Proof. We first note that

Blp(@)X (@) =8 = [ BIF(6),5)IX(2) = dantu).
Using Theorem 2.2, we have

E[F((¢(y), )| X(z) =€

-2l (e S ) + )

J=1

=E [F (’(¢(y) = (), 95095, @ )+ (8(v),95)€ )]
j=1 j=1
= /oo F(“ + i(sﬁ(y),gj)&j) Y eXP{ u” }du
—00 i=1 V 27|py|? 2|p, [?
where p, = ¢(y) — Z?zl (6(v), 97)9;- Hence we obtain (3.1) as desired.l]
REMARK 3.1. (1) The function F((¢(y), :cS) in Theorem 3.1 may be

replaced by F(y, (¢ (y),x)) depending on y, with the same proof.
(2) It is worth to note in the proof of the theorem that py d(y) —

S (6(y), 95)9; isin (g1, 92, -+ ,gn]T Where [g1, 02, - + ,gn] " is the or-
thogonal complement of the subspace of H spanned by {91,92, " ,9n}-

Since ¢(y) = py + 2_;—1(®(¥), 9)9;, it follows that
E[F((¢(),2))|X () = §]
X(z) = e]

=E- ( gcﬁ(y 195095 T )

=F F((pyamj + Z<¢(y)’gj>(gjax5)
L j=1

_E F ((py,wj + jé(‘ﬁ(y)’gj)gj)] '

Thus, in order to prove Theorem 3.1 we may use the above argument
in (3.2) instead of using Theorem 2.2 (see [3,4]).
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COROLLARY 3.2. Let X be as in Theorem 3.1. Let

v(e) = [ explilh,=)}do(h
where o is a C-valued measure on (H,B(H)). Then

E[(z)| X (z) = §]

3.3 3
(3.3) :/Hexp{i<X(h),§>}exp{_%(|h|2—IX(x)|2)}da(h)

where X (h) = ((g1,h),(g2,h),- - , (9gn,Z))-

Proof. We apply Theorem 3.1 after taking (Y,V,n) = (H,B(H),0),
F(t) = €** and ¥(y) = y. Then we have

Efy(z)|X () = €]
-/ m [ Zexp{izm, gﬁ@}e""exp{—%}duda(h)

J:

= [ exoix(m, ey exo { ~5in, P pao

—_

where p, = h — Z?zl(h, 9;)9;. Hence we obtain (3.3) as desired. 0

COROLLARY 3.3. Let X be as in Theorem 3.1. Let h € H and S be

a bounded linear operator on H. Assume that F((Sh,z)) is integrable
on B. Then

E[F((Sh,z))|X (z) = €]

= \/_#_pp /:ooF<u+ En:(Sh,gj).{_fj) exp{—%pzp}du

=1

(3.4)

where |p|? = |Sh|? - Z?zl(Sh,gj)2.
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Proof. We apply Theorem 3.1 after taking (Y,Y,n) = (H, B(H),n),
where 77 has the unity mass at Sh € H. a

COROLLARY 3.4. Let X and S be as in Corollary 3.3. Then for any
positive integer n,

(35) E[((Sh,))"|X (z) = €] = Z( ) kgnk

where a = Z?zl(Sh, g;)&;, v* =1 and

k/2
vk={13(k_1)(|Shl2_2?=1(‘5’h,gj)2) ’ k=2,476)"'
0, k=1,3,5--

Proof. The proof follows from Corollary 3.3 with F' defined by F(u)
= u™ and the fact that

1 /OO k { u2 }
—_— u® exps ——— pdu
V27pl2 J-oo 2|p|?

_{1-3---(k—1)|p|’°, k=24,6,---
10, k=1,35,-

where |p|? = |Sh|? — 37, (Sh, g;)°. O

COROLLARY 3.5. Let X be as in Theorem 3.1. Let A be a self-
adjoint, trace class operator on H. Then

El(z, Az)|X (z) = ]

= TrA—l—<Z§jgj,A(Z§j9j>> Z gJ’AgJ
j=1 Jj=1

=1

(3.6)

where TrA stands for the trace of A.
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Proof. Let {e;,} be the orthonormal eigenvectors and {a,,} be the
corresponding eigenvalues of A. Let (g;,em) = am;. Since (z, Aa:5 =
Yoy om((em,z))2, ae. T € B, we have by letting S =1, h = e,, and
n = 2 in Corollary 3.4

E((z, Az)|X = €]

_ mj’; amB[((em,2))?IX = €]
= i Qm [(iamﬁJ) (1 B Zam)]

m=1 j=1

Hence we obtain (3.6) as desired. O

COROLLARY 3.6. Let X and S be as in Corollary 3.4. Then
Elexp{A(Sh, 2)}| X (z) = {]

a7 exp{A Z(Sh,g»sj +5 (ISW -3 ish, 9”2) }

i=1 =1
where X\ € C.
Proof. Applying Corollary 3.3 with F' defined by F(u) = exp{\u},

Efexp{\(Sh,z)}| X () = €]
1 oo n u2 A
= 7o [ oo e AR sh s pe{ g
where [p|> = |Sh|*> — 3°7_, (Sh,g;)%. But

\/ﬁ /_: exp{Au} exp{-é%P}du _ exp{/\?zlpiz}.

Hence we obtain (3.7) as desired. O

The following theorem is a generalization of Theorem 5 in [8] and
Theorem 4 in [12] to abstract Wiener space.
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THEOREM 3.7. Let {g1,92, -+ ,9n} be an orthonormal set in H, and
let hi,ho,--- ,hx € H be such that h;’s are in [g1, 92, ,gn)t. Let X

be as in Theorem 2.2. If F((hy,x),--- , (hk, x)) is integrable on B, then
(3.8)

BIF((h1, ), , (e, )| X (2) = €] = BIF((h1, ), , (x, 2))]
Furthermore if {h1,ha,- - ,hx} is an orthogonal set in H, then
(3.9)

E{F((h1,3),- - » (hi, 2))| X (2) = €]

k k
1
I;I (2r|h;|%) -1/2 /Rk F(uy,---,u exp{—§ _E: }dul duy.

Proof Since h;’s are in [g1,92," " ,gn)t, it follows that X (:1;) and
((h1,x ) (hk,a:)) are independent, so that X and F((hi,= ) ,

(hi,z )) are independent. Hence (3.8) follows immediately. Equatlon
(3.9) is obvious. O

THEOREM 3.8. Let {g1,92, -+ ,gn} be as in Theorem 3.7. Let h1, ha,
. hx € H be such that h;’s are in [g1,92, " , 9n)- If F((hy,x), -+,
(hx,)) is integrable on B, then

(3.10) E[F((h1,2), -+ , (hk, 7)) X (z) = €]
= F(Z(’Zlagj &J’ ° z(hk,gj)gj)
7=1

Proof. Since hj’s are in [g1,82," - ,9n], the function F((hl,:nj, TN
(hk,)) is clearly F(X )-measurable Hence we have

E[F((h1,2),-- , (hx, )| X (z é]

J=1

=1
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from which (3.10) follows. O

4. Examples

Throughout this section, we consider the cases where B = ClQy,
H = C'[Q] and v = m,,. Let S be the operator on C'[Q)] defined by

(4.1) Sf(s,t) = /ot /08 f(u,v)dudv.

Then S is a bounded linear operator and the adjoint operator §* of S
is given by
(4.2)

S*f(s,t)

= stf(p,q) — 8 /0 f(pv)dv — ¢ /0 " flu, q)du+ /O /0 " F(u, v)dudv.

and then the operator A = S*S is given by
(4.3) Af(s,t) = / min{s, u}min{¢, v} f(u,v)dudv.
Q

Then we note that A is a self-adjoint, trace class operator on C’[Q)] and
that (f, Ag) = (Sf,Sg) = fQ f(u,v)g(u,v)dudv for all f,g € C'[Q] and
so A is positive definite, i.e., (f, Af) >0, for all f € C'[Q)].

Let us a partition Trnn = {(85,¢;),4 =1,--- ,m;j =1,--- ,n} of Q
with0=s9 <581 < Sm=pand0=12y <t <--+ <tp, =gq. For
this Tm,n» let Qij = (si_l,si] X (tj_l,tj],i = 1,- . ,m;j = 1, e ,N and
A;s=8;—8;-1, Ajt =t;—t; 1. For a fixed §= (61,1, cee ,fm,n) c R™”,
define a function [£] on Q by

[€](s,8) =€i-1,4-1 + [(5 — si-1)(t — 1)/ (Dss D) A€
(4.4) +[(5 — si—1)/Ais)(&ij—1 — &i-1,5-1)
+ [t —tj_1)/Bjt)(Eim1,5 — &i-1,5-1)
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on each Q);; where Aijg: &i—&i-15-&j—1+&-1,-1, &0, = &0 =0
for all 7 and j, and [€](s,t) = 0 if st = 0.
Let g;; € C'[Q] be defined by

(4.5) (u,v)dudv.

ij (8,8 1

9ot = \/KST/ [ 1

Then {g11,*"* ,9mn} is an orthonormal set in C’[Q] and
N 1

4.6 T e —

( ) (gJ .’13) \/ATAJt

where Aijx(s,t) = .’L’(Si,tj) —_ .’13(81'_1,tj) - :L'(Si,tj_.l) + :I:(Si._l,tj_l).

EXAMPLE 4.1. Let S be the operator as in (4.1). Let h € C'[Q] be
defined by h(s,t) = st. Then it was shown in {3] that

Aijx(sa t)

(4.7) (S*h,x5 =/ z(s, t)dsdt.
Q
Using Corollary 3.4 together with (4.6) and (4.7), we obtain
(4.8)
E[ / 2(s, )dsdt|z(s1, 1) = a1y 1 Z(Smytn) = gm,n]
Q
* N N 1, € . .
= B|(S"h,5l| (g 0) = 2 i e mij =1
m n 1
= (h,ng"> Az]§
;_72::1 I \/AisAjt
t ps M N o
A€ )
= 1q,;(u,v)dudv |dsdt
\/Q(/O /0 ;jzl AiSAJt @
=/[§_] s, t)dsdt
Q

which agree with the results of Park and Skoug’s [8].
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EXAMPLE 4.2. Let A be the operator as in (4.3). Then it was shown

n [3] that
(4.9) (a:,A:v5= / z%(s,t)dsdt and TrA= / stdsdt.
Q Q

Using Corollary 3.5 together with (4.6) and (4.9), we obtain

(4.10)

- - A€
= [(w’Ax)Kgij,x) = Ai.JSAjt’Z =1, ym;j =1, ,n]
m n Azg m n A é‘,'
= TrA + . “A( Y, ; )>
;; A,sAth’ ;; AzsA]th
- Z Z(gua qu,])
i=1 j=1
_ (pg)* / /t/“" =~ Ayé 2
= + o\Us 0;;Ai3A tlQu(“ v)dudv | dsdt
m n t ps 2
——=1g,,(u,v dudv) dsdt
/;;(/o/o VAisAjt Qs

_ (pa)® + / [€]2(s, t)dsdt

— 5i—1)2(t —t;_1)?
_ZZ/ (31 1t5- 1+( Alzs(Ajt j=1)

=1 j=1
tioa(s —sim1)? | sia(t—ti-1)°
dsdt
Ais + Ajt s

-+

which agrees with the result of Park and Skoug’s [8].
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EXAMPLE 4.3. Let ¢: Q — C’[Q] be defined by

8(s,8)(u, ) = /0 /0 £ - Losixio (v 2)dyde

where f € L%[Q] with ||f|| > 0. Let b(s,t) = |¢(s,t)|>. Then b is a
strictly increasing, continuous function on Q. It is interesting to note
that the function (¢(s,t),z) on @ x C’(0,¢] is a two parameter general-
ized Brownian motion with mean zero and covariance r((s, t), (s',t')) =
b(min{s, s'}, min{t,¢'}). By using Theorem 3.1, we obtain

B [ /Q (8(s, ), 2)dsdt|($(s, 1), ) = s]

-/ (65,0160, S ) st

¢ s
- s /Q b(s, t)dsdt

and

E[ /Q (8(5,2), 2))2dsdt|($(p, ), &) = s]

_ __1 . £
_/Q(b(s,t) b, q)b (s,t) + b(p,q)b (s, t))dsdt.

In particular, if we take f = 1, then the results above are special cases of
Example 4.1 and 4.2. Thus Example 4.1 and 4.2 also can be evaluated
by using Theorem 3.1.

EXAMPLE 4.4. Let S and h be as in Example 4.1. Then using
Corollary 3.6 we obtain

(4.11)
E[exp {/ x(s,t)dsdt}kc(sl,tl) =&1,1, ,Z(Smytn) = §m,n]
Q
A€
\/AiSAjt’

432
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_exp{ <\s*h12 ZZ (5"hy i) ) +i§n: R, Sg”>\/—i€_t}

i= 13 1 i=1 j=1
1 2
=exp{5 Sh= 33 (S h gi)ou] + /Q [ﬂ<s,t>dsdt}.
i=1 j=1

Let P™" be the orthogonal projection onto [g11, " ,gmn]. Then it is
easily shown that for f € C'[Q], P™"f(s,t) is the quadratic approxi-
mation of f based on the partition Tmn Which is given by

(4.12) P™" f(s,t) ZZ (h,9ij)9i5(s,t) = [f](s,1)
i=1j=
where
[£1(5,8) =f(si-1,t5-1) + [(s — s-1)(t — £j-1)/(DisB;8)|As; £ (s,2)
+[(s = si-1)/Dis)(f (i, tj-1) = f(si-1,1-1))
+[(t — tj-1)/At)(f(si-1,t5) — f(si-1,%j-1))
on each Q;; and [f](s,t) = 0 if st = 0. It can be checked that if

l7mnll — 0 as m — oo and n — oo, then P™" converges to the identity
operator I on C’[Q]. Hence we conclude that

|(I Pmn)s*hl2 ‘S*h ZE S h, i ng| — 0

=1 j=

as ||Tmn|| — 0. Therefore for each w € C[Q)], we have, from the last
equality of (4.11),

lim E[exp{/z(s,t)dsdt}|w(sl,t1)
| Tmnl—0 Q

=w(sy,t1), " ,Z(Smytn) = w(sm,tn)]

= lm [exp {](I - Pm")s*m?}] exp { /Q (s, t)dsdt}

= exp{/@w(s,t)dsdt}

which agrees with the result in [8].
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EXAMPLE 4.5. Let f € L?[Q] and h € C’'[Q] be defined by h(s,t) =
fo Jo f(u,v)dudv. Since
2

h— ZZ(h 9i)9i5| = |hf® - ZZ (, 9i5)?
i=1 j=1 i=1 j=1
. 2
= |h|2 ZZ ’gz] 9ij1
i=1 j=1
using (4.5) it follows that
(4.13)
m n 2
=" (h,gijdeii| = / (f - f)?dsdt = / f2dsdt — / f2dsdt
i=1 j=1 Q Q Q
and
(4.14) <h,zz (h, 9i; g”> / f(s,t) - f(s, t)dsdt = / f2dsdt
=1 j=1

where f(s,t) is defined by

= 1
t) = t
o) = maay |, 10500ds
on each Q;; and f(s,t) = 0 if st = 0. Next we note that

(4.15) <h,ZZ(9ij,$59ij> = /ij[a:]

i=1j=1

(4.16) (ii(h 9i)9is, X ) =/, fdzx

=1 j=1

(4.17) <ZZ (h » §ij g’J’ZZ Ggij, T gzy> = /Qf‘i[x]

=1 j=1 i=1 j=1
where for x € C[Q)], [z] is defined as in (4.12). Using (4.13)-(4.17), we
obtain Theorem 4 of (8].

434



Conditional abstract Wiener integrals of cylinder functions

EXAMPLE 4.6. Let f and h be as in Example 4.4. Assume that
F((h,)) is integrable. Then using Theorem 3.1 with S = I, we obtain

(4.18)
[ 7 alont) = 1 ot = b

1,_7§

= E[f((h,2)))(9:5,2) = Tl mi=ln)

1 m n ; 6 u2
R G ) ml
27r|p:2/_ (22 BV A W
where p=h — 377", 370 (h, 9i;)gi;. Since
m n 1,36 d
ZZ ) 9i) r__,sAt / f

using (4.13) it follows that (4.18) agrees with the result of Park and
Skoug’s given in [8].

5. Translation of Conditional Abstract Wiener Integrals

The abstract Wiener space version of Cameron-Martin translation
theorem states that if h € H and if T : B — B is a transformation
defined by T'(z) = z + h, then for any integrable function F on B and
[ in B(B)

/ Fly)du(y) = / F(z + h)J(h, z)dv(z)
r T-1(I)
where
(5.1) J(h,z) = exp {—%|h|2 - (h,$5} .
In particular, if I' = B, then
E[F(y)] = E[F(z + h)J(h, )).
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The following is an abstract Wiener space version of translation theorem
for conditional Wiener integrals.

THEOREM 5.1. Let X be as in Theorem 2.2 and Let h € H. Suppose
that T : B — B is a transformation defined by T(x) = z + h. For any
F e LY(B,B(B),v), we have

(5.2)
E[F(y)|X(y) = ¢

- B[P+ W21 + ) = o {-FXMPE + (X0.8)}

where X (h) = ({g1,h),- -+ ,{gn, h)) and 5—“—‘ (1, ,&n) €R™

Proof. Using Theorem 2.2 and Cameron-Martin translation theo-
rem, we have

¥ X (y) = &

=E [F (y - z(gj,y5gj + z::lﬁjgj)]
- [(:z:—+—h z::gJ,fB‘*'thj‘l"igjgj)J(h’m)]‘

i=1
Note that
J(h,z)
1 ~
= o { 3112 - (1,53}
1 n - n 9
= exp{—-2-|h|2} exp{-— (h,m +h - Z(gj,a: + h)g; + Zﬁjgj) }
j=1 =1

~exp{ <h h+Z g5, + hg; Zéggg>}
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And thus we have
E[F(y)|X (y) = €

= E{F(m-i— h— Z (9, + h)g; + Zéggg) exp{——|h|2}

j=1 i=1

.eXp{ <h z+h— Z (g5, +h) gJ+Z€]gJ)}

j=1 j=1

<h,jz::1(gj,w5gj>}]

<h'7 —h+ g]a _Zgjgj>}
= 7=1

7=1

.
o

Since x — z 1095, :t:)g_7 and Z —1(g5, migj are independent,

en{ - Fia)

=1
and

F<z+h Z gg,l“f‘h)gg +Z§J.‘JJ)

j=1
-exp{ <h z+h-— Zgj,m+h)g]+z:§]g])}
j=1 j=1

are also independent. Therefore we have
E[F(y)|X(y) = €]

= B[Fe+n exp{—1|h|2}exp{—(h,x+hi}]X<x+ M=

Efpo{~(n3 01 |
: exp{—<h, ~h+ ;(91" h)g; — jz:;éjgj>}
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= 5P+ 102X o + 1) = €] [exo - };(gf’m59j>}]

- eXP{—<h, -:1(‘% h)gj>} eXP{ <h, Z::l 6j9j> }

3

And hence we have

n

E[exp{—<h,j§:;<gj,xigj>}] -/ exp{—(jZ;<h,gj>gj,m)}du<m>
= exp{% z::l(h,gj)gj 2}

=ew{jx007}.

Note that
<h,§j(gj,hig,-> —|X(m)P  and <h,Zsjgj> = (X(h),8).
Jj=1 ji=1

Hence we obtain (5.2) as desired. O

EXAMPLE 5.1. Let X be as in Theorem 3.2 and let h € H. Then
Elexp{(h, z)}| X (z) = 7]

1 n n
= eXP{§<h, h — Zl<gj, h)g; + 22;njgj>}
‘ Jj= Jj=

where 7= (n1,- -+ ,Mn) € R™.
Proof. By setting F =1 and € = 7+ X (h) in Theorem 5.1,

1= B, )X (@) = lep  FXMIE + (X7}
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Hence we have, by using (5.1)
Elexp{~(h,z)}| X (z) = ]

= exp{%|h|2 — %l){(h)l2 + (X(h)’ﬁ)}

1 1 n n
= e 3 = 5 (m Y tas s ) - (23 ms )
=1 i=1

J
1 n n
= exp{§<h, h— gl(gj,h)gj - 2j;njgj>}'
The result now follows by replacing h by —h. a
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