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REAL VERSION OF PALEY-WIENER-SCHWARTZ
THEOREM FOR ULTRADISTRIBUTIONS WITH
ULTRADIFFERENTIABLE SINGULAR SUPPORT

JONGGYU CHO AND KWANG WHoI KM

ABSTRACT. We extend the Paley-Wiener-Schwartz theorem to the
space of ultradistributions with respect to ultradifferentiable sin-
gular support and obtain its real version. That is, we obtain the
growth condition in some tubular neighborhood of R™ of the Fourier
transform of ultradistributions of Roumieu (or Beurling) type with
ultradifferentiable singular support contained in a ball centered at
the origin, and its real version.

1. Introduction

The Fourier transform 4 of any distribution u € £'(R™) with com-
pact support can be extended to an entire analytic function in C",
called Fourier-Laplace transform of u, i.e., 4(¢) = uz(e~**=%), ¢ € C™.
Then Paley-Wiener-Schwartz theorem determines the space of general-
ized function by only the growth condition of its Fourier transform.

Paley-Wiener-Schwartz theorem has been extended by L. Hérmander
[5] to the space of distributions u € £'(R"™) with respect to the singular
support as follows:

THEOREM 1.1. Let u € &'(R™) be a distribution with compact sup-
port and K be a convex compact subset of R® with supporting function
Hg(§) = supycg(z,€). If singsuppu C K, then its Fourier-Laplace
transform i extends to an entire analytic function and there exist a
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constant N and a sequence of constants Cp,, m = 1,2,..., such that
for every € > 0

(11) Q)] € Cm(1 + [¢)N exp(Hk (Im () + e[Im(]), ¢ €C™,

whenever [Im¢| < mIn(1 + [¢]).
Conversely, if i. extends to an analytic function satisfying the condi-
tion (1.1) then singsuppu C K.

The above result has been extended by G. Bjorck [1] to the space of
ultradistributions of Beurling-Bjorck type with w-singular support. In
this paper we prove the Paley-Wiener-Schwartz type theorem for the
space of ultradistributions of Roumieu (or Beurling) type with respect
to ultradifferentiable singular support.

On the other direction it has been recently proved by N. Mandache
[7] that (1.1) can be replaced by estimates only on the real variables,
called the real version of Paley-Wiener-Schwartz theorem, as follows:

THEOREM 1.2. Let u € £'(R™), K be convex, compact and sym-
metric with respect to the hyperplanes of coordinates in R™ and set
CK,e,« = SUPgc ., |2*|, where K. is an e-neighborhood of K.

If singsuppu C K, then there exist a constant N and a sequence of
constants C,,, m = 1,2, ..., such that for every € > 0

(1.2) 0%4(¢)] < CmCrea(l +EDY, €€RT,

whenever |a| < mIn(1 + |€]).
Conversely, (1.2) implies singsuppu € K.

Here, a compact set K is said to be symmetric with respect to the
hyperplanes of coordinates in R" if for every z = (z1,...,Zn) € K,
(£z1,... ,%z,) € K for all combinations of signs.

In this paper we extend the above result of N. Mandache to the space
of ultradistributions with respect to ultradifferentiable singular support,
which is the real version of the Paley-Wiener-Schwartz theorem for
ultradistributions with respect to ultradifferentiable singular support.
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2. Paley-Wiener-Schwartz Theorem

Let Mp,p = 0,1,2,..., be a sequence of positive numbers. We
consider the following conditions on M,,.
(Ml) Mg S Mp—lMp+17 p= 1, 2, cee
(M.2)" For some C, L >0, Mp1 < CLPM,, p=10,1,2,....
(M.2) For some A, H >0, Mpq < AHPYIM,M,, p,q=0,1,2,....
(M.3) 2;;1 My /M, < oo.

For each sequence M, its associated function M(t) on (0,c0) is de-
fined by
’ tP My

M, t>0.

M(t) = suplog
P

Let €2 be an open subset of R”. An infinitely differentiable functions
¢ is called an ultradifferentiable function of Roumieu type (resp. of
Beurling type), denoted by &; M,}(2) (resp. E(ar,)(2)), if it satisfies the
following condition: For every compact subset K there exist positive
constants h and C (resp. for every h > 0 there exists a constant C' > 0),
depending on ¢ and K, such that

sup |6%(z)| < ChI®! My,
zeK

where |o| = a1 + a2 + ... 4 an, 0% = 071852 ... 8%~ with §; = §/0z;
for every multi-index o0 = (a3, 0as,...,a,) with nonnegative integers
aj, j = 1,2,...,n. Then we denote by EfMp}(Q) (resp. SfM,,)(Q))
the strong dual of the space E(u,}(R2) (resp. E£(ar,)()) and call its
elements ultradistributions of Roumieu type (resp. of Beurling type)
with compact support in §2, even though 2 is not open.

We first introduce the well-known results of Paley-Wiener-Schwartz
theorem in the theory of ultradistributions as in Komatsu [6].

THEOREM 2.1 [6]. Let K be a convex compact subset in R"™ with
supporting function Hk (§) = sup,c x(x,£). Suppose that M), satisfies
(M.1), (M.2)’ and (M.3)'. Then an entire function $(¢) on C™ is the
Fourier transform of an ultradifferentiable function ¢(x) of Roumieu
type (resp. of Beurling type) with support contained in K if and only
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if there are positive constants h and C (resp. for any h > 0 there is a
constant C > 0) such that

[6(0)] < Cexp{-M([¢|/h) + Hk(Im()}, ¢€C7
where M(t) is the associated function of Mp.

THEOREM 2.2 [6]. Let K be a convex compact subset in R" with
supporting function Hyx. Suppose that M, satisfies (M.1) and (M.2)
(resp. (M.2)). Then the following conditions are equivalent for an
entire function 4(¢) on C™.

(1) @(¢) is the Fourier-Laplace transform of an ultradistribution
u € SEMP}(K) (resp. EEMP)(K)).

(ii) For every € > 0 and for every L > 0 there exists a constant
C > 0 (resp. there exist positive constants L and C) such that

15(0)] < Cexp{M(L[(]) + Hk(Im() + e[Im(]}, ¢eC™

DEFINITION 2.3. For an ultradistribution u the ultradifferentiable
singular support of u, denoted by singysuppu, is the set of points
having no open neighborhood to which the restriction of u is an ultra-
differentiable function.

We now formulate and prove Paley-Wiener-Schwartz type theorem
for the space of ultradistributions with respect to ultradifferentiable
singular support, which is the improvement of Theorem 1.1, in fact, its
proof follows from the proof in [5].

THEOREM 2.4. Suppose that M), satisfies (M.1), (M.2) (resp. (M.2)’)
and (M.3)'. Let u € SEMP} (resp. 5(IM,,))' Let K be a convex compact
subset in R™ with supporting function Hg.

In order that singprsuppu C K, it is necessary and sufficient that for
every L > 0 there exists a constant Cy, > 0 (resp. there exist positive
constants L and Cp,), m=1,2,..., such that

(2.1) |4(¢)| < Cmexp{ M(LI|) + Hk(Im()}, (€C™,
where |Im¢| < m M(|¢|) and M(t) is the associated function of M.
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Proof. Let u € 8{ M,} with singysuppu C K. Choose an ultrad-

ifferentiable function ¢ € Eqar,}(K1/m) such that suppy C Ki/m =
K + B(0,1/m) and ¢ = 1 on a neighborhood of K. Then by Theorem
2.2 we have for every 0 < L; < Ly

(@W(Q)] < Cexp{M(Li[C]) + Hrc(ImC) + (- +©)llmc]}
< Cexp {M(Lo[C)) + Hx(ImQ)}, ¢ C

(2.2)

for |Im¢| < m M(|¢]). Since (1 — )u is an ultradifferentiable function
with compact support we have for some h > 0

(23) (1= @w)(Q)| < Cexp{-M(I¢I/R)} if [Im(| < mM(IC]).

Combining (2.2) and (2.3) we obtain the estimate (2.1).

To prove the converse we choose an ultradifferentiable function ¢ €
£(m,}(B(0,1)) such that suppy C B(0,1) and [ ¢(z)dz = 1 and put
ws(x) = 6 "p(x/8). In order to fit the set where (2.1) is applicable, we
define I';, to be the cycle

R™>¢ — ((€) =&+ inM(V/1+ [€]?).

Note that M(t) = fot m(A)/Ad\, where m()) is the number of m, =
M,/M,_; < X. Thus (M.3)" implies that d{; A ... Ad(, = F(£)dér A
...Ad§, where F(£) — 1 as £ — 00, and we have |[Im | < |n|M([¢]) on
T,. Then from Cauchy’s integral formula we obtain

(24)  wrple) =7 271),1 /F @O B5(C) dCL A+ A dl.

Since M, satisfies (M.3)’ we have for { = £+ inM(4/1+ [¢[2) € T, and
each L >0

le¥ =9 a(¢)| < Cpexp{ M(LIC|) + M(y/1+ [E2)(Hk (n) — {z, )}

If zo ¢ K we can choose n so that Hx(n) — (z,7) < —1 for all =
in a neighborhood Xy of zg. If we replace n by tn the integral (2.4)
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absolutely converges for each € X even if the decreasing factor Qs is
omitted. Since @5(¢) = ¢(6¢) — 1 as § — 0 the restriction of u to Xy
is the ultradifferentiable function

u(z) = (2%)_"/ O G A ... Ndn, T € Xo,

n

which completes the proof. : (W]

3. Real version of Paley-Wiener-Schwartz theorem

Let K be convex, compact and symmetric with respect to the hy-
perplanes of coordinates in R™ with supporting function Hg(¢) =
sup,c g {z,€), where K is said to be symmetric with respect to the hy-
perplanes of coordinates in R™ if for every z = (x1,... ,z,) € K, (L1,
... ,xzy,) € K for all combinations of signs.

We first introduce the real version of the Paley-Wiener-Schwartz the-
orem for ultradistributions, that is, the estimate (2.1) can be replaced
by estimates only on the real variables, which is the extension of the
results of N. Mandache (7] to the space of ultradistributions of Roumieu
(or Beurling) class.

THEOREM 3.1 [2]. Suppose that M), satisfies (M.1) and (M.2) (resp.
(M.2)’). Then the following conditions are equivalent for an infinitely
differentiable function 4(€) on R™.

(i) @(§) is the Fourier-Laplace transform of an ultradistribution
u € SiMp}(K) (resp. €(Mp)(K)).

(i) For every € > 0 and for every L > 0 there exists a constants
C > 0 (resp. there are positive constants L and C) such that
for each a € N§

[0%4(€)| < CBk,c,c exp M(L[E]), € €R™

where By o = infoern ol exp(Hk (p) + €lp])/p®-

Note that from the definition of the associated function M(t) of each
sequence M, of positive numbers we have M(et) = sup, r_,(1 +
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logt/mi) > m(t), where m(t) denotes the number of m,, = M,/M,_4
less than or equal to ¢ and the condition (M.2) is equivalent to my4; <

HM ,i/ *. We refer to W. Matsumoto [8] for more details.

THEOREM 3.2, [2]. Suppose that M, satisfies (M.1), (M.2) and
(M.3)!. Then the following conditions are equivalent for an infinitely
differentiable function f(£) on R™.

(i) f(€) is the Fourier-Laplace transform of an ultradifferentiable
function of Roumieu type (resp. of Beurling type) with support
contained in K.

(ii) For every € > 0 there exist positive constants L > 0 and C > 0
(resp. for every L > 0 there exists a constant C > 0) such that

6% f(€)] < CBk .0 exp(~M(L|£])),
where By ¢ o = infoern of exp(Hi (p) + €lp|)/p=.

Note as in (7] that for Ck o = sup,c g, || we have

1\ 1B
(31) CK,e-+—5’,a+ﬁ 2 (ﬁ) CK,C,Q‘

In particular, for a ball K = B(0, R) centered at the origin with radius
R > 0 we obtain for each € > 0 and multi-index o

_[]aflel atele I
(32) BK,e,a = ac la||a| (R + 6) o~ CK,E,O:

by the Lagrange multiplier and Stirling’s formula.
We introduce the dual space (SAA:II:)/ of the Gelfand-Shilov space of
general type S. The space SAA,/[[: consists of all infinitely differentiable

functions ¢ on R™ satisfying the following: There exist positive con-
stants a, B and C such that

sup | 9%¢p(z)| exp M(alz|) < CBI*I N, aeNp
TzERn
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‘and we denote by (S M, ) the strong dual of the space SAA,',I" Then the
Fourier transform is well-defined on this space and, moreover, is an
1somorph1sm of the space (S M, ) We refer to I. M. Gelfand and G. E.

Shilov [4] for more details.

We are now in a position to state and prove the real version of the
Paley-Wiener-Schwartz theorem for the space of ultradistributions with
respect to ultradifferentiable singular support, which is the extension
of Theorem 1.2.

THEOREM 3.3. Suppose that My, satisfies (M.1), (M.2) (resp. (M.2)")
and (M.3). Let u € 8£Mp}(]R") (resp. S('MP)(R")). Let K be a ball
B(0, R) centered at the origin with radius R > 0 in R™.

In order that singysuppu C K, it is necessary and sufficient that
for every € > 0 and for every L > 0 there exists a constant Cp, > 0
(resp. there exist positive constants L and Cp) for eachm = 1,2,...
such that

(3.3) |0°a(€)| < C ,/, H  (R+ )l exp M(LE])

where |a] < m M(|{]).

Proof. Let u € 8{ M,} with singyssuppu C K. Choose an ultrad-

ifferentiable function ¢ € Erar,)1 (K1 /m) such that suppy C Ki/m =
K + B(0,1/m) and p =1 o0n a nelghborhood of K. Then we have for
every ¢,a>0and m=1,2,.

(3.4) (@) < m—“lﬁ (R + )l exp M(ale])

Since (1 — ¢)u is an ultradifferentiable function with compact support
we obtain from (3.2) for suppu € B(0, A) and for every a’ > 0

(1= @u)(Q)] < \ll I'°‘ exp{mlog(4 + )M (|¢]) — M(a'lE)},
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where |a| < m M(|¢]). Therefore, combining (3.4) and this above for-
mula with sufficiently large a > 0 we obtain the wanted estimate (3.3).

To prove the converse we choose an ultradifferentiable function ¢ €
S(MP)(B(O,ez)) of Beurling type such that supp ¢ C B(0,e?) and ¢ =
1 on a neighborhood of the ball B(0,e) and let pi(x) = p(x/mk),
wo(z) = p(z) and Yi(z) = pr+1(x) — (), where mi = My /My, for
k=1,2,....

Let 2o € R™\K. Then there exists a multi-index a € N§ so that
|z§| > Ck 0,o- In fact, it is equivalent to

Lo (s 4
|z8| > & Rlel. % _ o e e
|a||°4 | |[a|

for some by +...+b, > 1, b; > 0,4 = 1,... ,n, which follows if we take
rational numbers ri,... ,7, such that

r1r+...+rp=1, 0<r<b;, i=1,...,n
Hence we can choose o € NZ and € > 0 so that 22| > (1+€)1/a®/[a|le]
(R+¢€)!®l for any x € B(zo,¢€). Also, since each 1y (£)@(¢) has compact
support, fn(€) = @(€)(€) + X p—o Vx(£)@(£) is contained in (S,l‘\,,l:)'
Then f,(£) converges to 4(£) in (8 ) and F~ (1/1k(§)'&(£)) is entire
analytic where F~! denotes the F01_1r1er inversion.

For zo € R™\K, it suffices to show that there exists a constant
0 < p < 1 such that for every k, B and for some C > 0

(3.5)  |0PF (W (€)a(®))(z)| < CC¥ Mg p* for z € B(wo,e€).

In fact, since suppyx C {€ € R"| emi < [¢] < €?my41} we obtain
from (3.1), (3.2) and (3.3) that for each § > 0

|88 F 1 (g (©)a()) ()| < e~ /R ) 6”“’(%(&)&(6)5")’%

< Cla®|™™ (1 + myer)P Y (’”ko‘)(mk)"‘hth,

y<rka Y

1/ B ||a (R + €)' exp M(Le?mpy1)(e*mps1)™
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< c’(l%e)"’“(z—‘ﬁ/—ﬁ)"’I exp((L' + 8)K)

% () (L ey

€
y<rka v € my

o 2V ( pris (L4 hy/m HTl2H L e)lel &
< 0"(=)7 (¢ T )") Mg

where the second inequality is obtained from the inequality (3.3) since
the integral is taken over the support of ¥ and then M(|¢|) > M(emyx)
> m(my) = k for any £ € supp i, where m(t) denotes the number of

mp = Mp/M,_1, p=1,2,..., less than or equal to t. Therefore we
obtain the required inequality (3.5) if we choose a suitable A > 0 for
sufficiently large r and k. O
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