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CENTRAL SEPARABLE ALGEBRAS
OVER REGULAR DOMAIN

EunMi CHo1 AND HEISOOK LEE

ABSTRACT. Over a field k, every Schur k-algebra is a cyclotomic al-
gebra due to Brauer-Witt theorem. Similarly every projective Schur
k-division algebra is itself a radical algebra by Aljadeff-Sonn theo-
rem. We study the two theorems over a certain commutative ring,
and prove similar results over regular domain containing a field.

1. Introduction

Let R denote a commutative ring and U(R) denote the set of units
in R. Let B(R) be the Brauer group of classes of central separable
R-algebras [2]. A central separable R-algebra which is a homomorphic
image of a group ring RG for some finite group G is called a Schur
algebra, and the set of similar classes of Schur algebras forms the Schur
subgroup S(R) of B(R).

The Brauer (1961) and Witt (1963) theorem ([11, p. 31]) shows that if
R is a field k of characteristic 0 then every Schur k-algebra is similar to a
cyclotomic algebra. Thus if C(k) is the set of all algebra classes of B(k)
which are represented by a cyclotomic algebra over k then C(k) = S(k).

In (8], Lorenz and Opolka generalized Schur algebras by substitut-
ing group ring RG by twisted group ring RG* for some 2-cocycle a €
Z*(G,U(R)) on which trivial action is defined. A central separable R-
algebra that is a homomorphic image of RG? is called a projective Schur
algebra, and the set of similar classes of projective Schur algebras forms
the projective Schur subgroup PS(R). Aljadeff and Sonn proved in [1]
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that if R = k is a field then a projective Schur division k-algebra is a
radical algebra (k(Q)/k, a) which is a generalization of cyclotomic alge-
bra. The Aljadeff-Sonn theorem is a counterpart of Brauer-Witt theorem
with respect to projective Schur algebra.

The purpose of this paper is to study the Brauer-Witt and Aljadeft-
Sonn theorems over a certain commutative ring. For any commutative
ring R, the Brauer-Witt theorem may fail that a Schur R-algebra is not
necessarily similar to a cyclotomic R-algebra [7]. One of our main the-
orem is that if R is a regular domain containing a field then every Schur
R-algebra is similar to a cyclotomic algebra. In studying the Aljadefi-
Sonn theorem with projective Schur R-algebras, we do not have a corre-
sponding situation: for a projective Schur R-algebra A and for the field
of quotient K of R, even though K® A is a radical K-algebra, A need not
be a radical R-algebra. However we prove that there is a ring extension
T of R such that T ® A is a radical T-algebra.

In this paper we use the usual nétations: for two central separable
R-algebras A and B, we denote by A ~ B if A and B are similar. The
similar class of central separable R-algebras A is denoted by [A] € B(R).
Let U(R) be the set of units in R and €, be a primitive n-th root of unity
forn > 0.

2. Schur Algebra over Ring

Let ¢ : R — T be a homomorphism of commutative rings. Then
there are induced homomorphisms over Brauer and Schur groups

B(¢): B(R) — B(T) and S(¢): S(R) — S(T)

which are defined by tensor product that [4] — [T’ ® A]. In case that
T is a quotient field of R, if B(¢) is a monomorphism then so is S(¢).
However S(¢) need not always be a monomorphism [2]. Of course the
map B(R) — B(T) may not be a monomorphism while S(R) — S(T) is
a monomorphism [5].

LEMMA 1. ([9, (6.19)]) Let R be a regular domain with quotient field
K. Then B(R) — B(K) is a monomorphism. Thus so is S(R) — S(K).
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Suppose that T is a Galois ring extension of R with Galois group
Gal(T/R) = G (refer to {6, (3.1.2)]). For the algebra (T/R,a) =3 .o T4,
having T-basis {u,|o € G} such that u,z = o(z)u, and u,u, = a(o, 7)u,,
for z € T, 0,7 € G where each a(o,7) € U(T), a is a 2-cocycle in
Z*(T/R,U(T)) on which natural Galois action is defined, and (T/R, @)
is called a crossed product algebra.

Assume that the separable closure of R contains a primitive root of
unity € and that the cyclotomic extension T = R(e) of R is a Galois
extension of R in the separable closure with Galois group G = Gal(T/R).
Then the crossed product algebra (T/R,a) where o € Z*(T/R,U(T))
has values in (g) is called the cyclotomic algebra. And there is a central
group extension H of () by G determined by the cocycle ¢, and the
natural homomorphism from RH onto (R(e)/R, ), thus [(R(¢)/R, a)]
belongs to S(R).

Let S’(R) denote the set of similar classes of algebras of B(R) which
are represented by a cyclotomic algebra over R. Then S’(R) is a subgroup
of S(R) [7]. Due to Brauer-Witt theorem if R = k is a field then S'(k) =
C(k) = S(k). However S'(R) may be proper in S(R) (7). We now prove
the Brauer-Witt theorem over regular domain containing a field.

THEOREM 2. Let R be a regular domain containing a field. Then
every Schur algebra over R is similar to a cyclotomic R-algebra.

Proof. Let [A] be any element in S(R). If charR > 0 then S(R)
is trivial (refer to [7]) thus we have nothing to do. We now assume
charR = 0.

If K is the field of quotient of R then B(¢) : B(R) — B(K) is a
monomorphism by Lemma 1. Thus as an element [A] in B(R), we have

(1 B(¢)[A] = [K ® 4] € B(K).

Since A is the homomorphic image of RG for some finite group G, K® A
is a homomorphic image of K@ RG = KG thus [K®A] € S(K). Because
of the Brauer-Witt theorem, we may write

K® A~ (K(en)/K,B) for B € Z}K(e.)/K,K(en)")

where 3 has values in {¢,,) for a root of unity ¢, (n > 0).

Since charR=0, R contains the field of rational numbers @ thus any
nonzero integer is unit in R, i.e., n € U(R). This means that R(e,)
is a separable extension of R. By restriction G = Gal(K(e,)/K) can
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be considered as a group of automorphisms of R(e,). And since R is
integrally closed, G fixes exactly R, ie., R(¢,)¢ = R. Thus R(e,) is a
Galois extension of R with Galois group G by [6, (3.1.2)]. Now considering
f as an element in Z%(R(e,)/R, U(R(e,))), we have a cyclotomic algebra
(R(en)/R, B), thus [(R(e,)/R, )] € B(R) and

B(¢)[(R(en)/R, B)) = [(K(en)/ K, B)] = [K ® A].
Since B() is injective, comparing this with (1), we have [4] = [(R(e,)/R,
B)] and A ~ (R(e,)/R, ). This completes the proof. O

This means that S(R) = S'(R) if R is a regular domain containing a
field.

COROLLARY 3. Let R, K be as in Theorem 2. Then S(R) is isomor-
phic to S(K).

Proof. Let [A] be an element in S(R). Due to Theorem 2, A is similar
to a cyclotomic R-algebra (R(e)/R, ) for some root of unity ¢, and S(¢)
maps (4] = [(R(e)/R, B)] to [(K(e)/K, B)].

Conversely any Schur K-algebra B is similar to (K (,,)/K, a) forn > 0
by Brauer-Witt theorem. If we consider (R(e,)/R, a) then it is a central
separable R-algebra as we saw in the proof of Theorem 2, hence is a Schur
R-algebra. Moreover S(¢)[(R(ea)/R, )] = [(K(e,)/K, )] thus S(¢) is
an isomorphism. a

For [A] € B(R) and for a ring extension T of R, we say T splits A if
[T ® A] is trivial in B(T'). Let B(T/R) denote the subset of B(R) whose
elements are splitted by 7. Then B(T/R) is a subgroup of B(R) and is
indeed the kernel of B(R) — B(T). By substituting B(R) by S(R), we
write S(T'/R) for the subgroup of S(R) consisting of Schur R-algebras
splitted by T'.

Let K be the quotient field of R. For a ring extension T of R, let F
be the quotient field of T Then F is an extension of K, and we consider
B(K/R), B(T/R), B(F/R), B(F/T) and B(F/K). The first three are
subgroups of B(R), and B(T/R), B(K/R) are subgroups of B(F/R).

THEOREM 4. Let R be a commutative ring with ring extension T. Let
K and F be the quotient fields of R, T respectively. Then B(F/R)/B(T/R)
Is isomorphic to a subgroup of B(F'/T'). Moreover if R is a regular domain
then there are monomorphisms B(T/R) — B(F/K) and B(F/R) —
B(F/K).
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Proof. Consider the following diagram

B(T) 4, B(F)
f1 Tg
B(R) 2, B(K)

where f, g, ¥ and ¢ are homomorphisms naturally defined by tensor
product. Then it is a commutative diagram because

Yf[A|=[FO®T®A]=[FQ®A] =g¢[A], for [A] € B(R).

Let p : B(F/R) — B(F/T) be a map defined by [A] — [T ® A].
Clearly if [F ® A] = 1 then [F® T ® A] = 1 and u is a homomorphism.
Moreover

kerpy = {[A] € B(F/R)| [T ® A] =1 € B(F/T)}
{l[AJe BR)| [FR A =1, [T®A=1,[FQT®A] =1}
{[A] € B(T/R)} = B(T/R).

Thus B(F/R)/B(T/R) is isomorphic to a subgroup of B(F/T).

If [A] € B(T/R) then [T ® A = 1 in B(T) and [K ® A] € B(K),
moreover [K ® A] € B(F/K) because [FQ K® A] = [F ® A] = g¢[4] =
Y f[A] = Y[T ® A] = [1]. Thus we have a homomorphism x : B(T/R) —
B(F/K) defined by [A] — [K ® A]. Now

kerx = {[4] € B(T/R)| [K ® A] =1 € B(F/K)} C B(K/R).

Since B(K/R) is the kernel of B(R) — B(K) which is injective due to
Lemma 1, B(K/R) and ker x are trivial hence  is a monomorphism.
Similarly there is a homomorphism B(F/R) — B(F/K) with kernel
‘B(K/R) which is zero. O

COROLLARY 5. Suppose that R is a Dedekind domain with the quo-
tient field K. Let F be a finite dimensional extension of K and T be an
integral closure of R contained in F. Then B(K/R) = B(F/T) =1 and
B(F/R) = B(T/R).

Proof. If R is a Dedekind domain and K is the quotient field of R then
B(R) — B(K) is a monomorphism (refer to [6, Lemma V.2.2]). And it
is a well known fact that the extension T of the Dedekind domain is itself
a Dedekind domain having quotient field as F* (refer to [10, (4.4)]). Thus
B(T) — B(F) is also a monomorphism, hence B(K/R) and B(F/T) are
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trivial. Moreover since B(F/R)/B(T/R) is isomorphic to a subgroup of
B(F/T) by Theorem 4, we have B(F//R) = B(T/R). O

We remark that by substituting Brauer groups B(K/R) and B(F/R)
by Schur groups S(K/R), S(F/R) respectively, we have similar results
to Theorem 4 and Corollary 5 by Lemma 1. Furthermore we have the
next corollary.

COROLLARY 6. Let R be a regular domain containing a field and let
T, K and F are the same as in Theorem 4. Then S(F/R) = S(F/K) =
S(T/R).

Proof. Due to Corollary 3, S(R) & S(K) thus S(F/R) = S(F/K). DO

Therefore under the same assumptions of Corollary 5, S(F/K), S(F//R)
and S(T'/R) are all isomorphic.

3. Projective Schur Algebra over Ring

A central separable R-algebra is called a projective Schur R-algebra
if it is a homomorphic image of twisted group ring RG* for some finite
group G and a € Z%(G,U(R)). A set of similar classes of projective
Schur R-algebras forms a group, called projective Schur group PS(R)
(refer to (3], [4]). We recall that RG® is separable if |G| € U(R).

THEOREM 7. Let ¢ : R — T be a homomorphism of commutative
rings. If ¢ maps unity of R to unity of T then there is an induced group
homomorphism PS(¢) : PS(R) — PS(T) defined by [A] — [T ®g A] for
[4] € PS(R).

Proof. For [A] € PS(R), there is a surjection ¢ : RG* — A for some
finite group G and o € Z%(G,U(R)). Let {uylg € G} be a basis of
RG* satisfying ugu, = a(g,z)uy, for g,z € G. By setting 8 = ¢a
defined by B(z,y) = ¢ a(z,y)) for all z,y € G, it is clear that F is a
2-cocycle in Z2(G,U(T)). If we consider the twisted group ring TG”
with basis {v,|g € G} such that v,v, = B(g, £)v,., then the algebra can
be regarded as an R-module by the action r- 3 o t,vy = 2gec F(r)tgvg
for r € R,t; € T. And we can see that T ® RG* is isomorphic to
TGP as R-modules where the tensor map T ® RG* — TGP is defined by
t® D e Tollg M Dgeqtf(re)vg for t € T and 7y € R. This shows that
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there is a surjection TG? — T ®p A, hence [T ® A] € PS(T). Moreover
since T ®g (A®g B) = (T ®r A) ®7 (T ®g B) for [A],[B] € PS(R), it
follows that PS(¢) is a homomorphism. a

We call PS(¢) a projective Schur homomorphism. In case of regular
domain, the next corollary follows immediately from Lemma 1.

COROLLARY 8. Let R be a regular domain and K be the quotient
field of R. Then PS(R) — PS(K) is a monomorphism.

The role of cyclotomic field extension in the theory of Schur algebra
can be replaced by the radical field extension in the theory of projec-
tive Schur algebra. When we say L = k(f2) is a radical extension of k,
we mean that Q < L* and Qk*/k* is a torsion group, that is for any
z € Q, z mod k* is of finite order in Qk*/k*. A crossed product algebra
A = (L/k,a) is called a radical k-algebra if L = k((2) is a finite radical
Gal(L/k)-Galois extension over k (i.e.,  is a Gal(L/k)-invariant sub-
group of L*) and a € H?(L/k, L*) is the image of some & € H?(L/k,Q)
(refer to [1]). Moreover if the Galois group is abelian then A is called an
abelian radical algebra. A radical algebra is a projective Schur k-algebra
[1], and an analog of Brauer-Witt theorem was proved as follow.

LEMMA 9. [1] Let k be any field. Then every projective Schur division
k-algebra is an abelian radical algebra over k.

Over a commutative ring R, a crossed product algebra (T'/R,a) is
a radical R-algebra if T = R(R) is a finite radical Gal(T/R)-Galois
ring extension of R (i.e., Q is a Gal(T/R)-invariant subgroup of U(T)
such that QU(R)/U(R) is finite) and @ € H*(T/R,U(T)) is an image of
some & € H*T/R,). By considering the group extension I' of Q by
Gal(T/R) determined by o, the algebra (T'/R, a) is a projective Schur
R-algebra.

We study similar property of Lemma 9 over a certain commutative
ring.

THEOREM 10. Let R be a regular domain of characteristic 0 contain-
ing a field and K be the quotient field of R. Let A be a projective Schur
R-algebra such that K ® A is division over K. Then there is a ring
extension T of R such that T ® A is similar to a radical T-algebra.
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Proof. For [A] € PS(R), thereis a finite group G and a € Z%(G,U(R))
such that A is a homomorphic image of RG*. For quotient field K of R,
the usual inclusion ¢ : R — K produces monomorphisms

B(¢): B(R)— B(K) and PS(¢): PS(R)— PS(K)

defined by tensor product, and K ® RG* = KG* represents K ® A.
Since K ® A is a projective Schur K-algebra which is division, it is an
abelian radical K-algebra by Lemma 9 thus we may write

K®A = (K(Q)/K,p)

where K(Q) is an abelian radical extension of K and § € H*(K()/
K, K()*) is the image of some ' € H2(K(2)/K,?) under the inclusion
Q — (K(R2))*. For our convenience we write the abelian Galois group
Gal(K(©2)/K) by G.

Consider the ring extension R(Q2) over R. By restriction, G is the
group of automorphisms of R(f2). And since R is a regular domain, R is
integrally closed [9, (6.23)] thus G fixes exactly R, i.e., R(Q?)¢ = R. More-
over since charR = 0, R contains the field of rational numbers ) hence the
order |G| is unit in R. This implies that R(f2) is a Galois extension of R
with Galois group Gal(R(Q2)/R) by [6, (3.1.2)]. Denoting the restriction
of B € H*(K(Q)/K,) by the same notation 3’ € H*(R(Q)/R,?), the
crossed product algebra (R(Q2)/R, (') is a central separable R-algebra.
By regarding 3 as an image of §' € H?(R(Q)/R,Q) under the inclu-
sion @ — U(R(Q)) — (K(R))*, we can consider (R(Q2)/R,3) with
B € H¥(R(Q)/R,U(R(R))). Furthermore since B(¢) is a monomorphism
and since

B(¢)(R()/R, B)] = [(K()/K, )] = [K ® A] = B(¢)[A],

it follows that the R-algebras A and (R(Q)/R, ) are similar.

Let T = R(Q)N K. Then R C T and T(Q2) = (R(Q)N K)(Q) = R(Q).
Since K(Q) is radical over K, there is n > 0 such that 2" € K for
any z € Q. Hence 2" € R(2) N K = T, this shows T(Q?) is a radical
extension of T. Moreover the extension T(2)/T is finite and abelian
because Gal(T'(2)/T) < Gal(R(2)/R). By using the same notation g
abusively. for the restriction of 5 to Gal(T'(Q)/T), the crossed product
algebra (T(Q)/T, B) is a radical T-algebra hence is a projective Schur
algebra in PS(T).
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If we consider the quotient field L of T then L is isomorphic to K
thus PS(L) = PS(K). Moreover since T is a regular domain, there is a
monomorphism 1 : PS(T) — PS(L). And from the inclusion B — T,
we also have a homomorphism f : PS(R) — PS(T) where both % and
f are defined by tensor products. Thus the following diagram

‘pPs(R) ¥ psk)
i ’
ps(ry PS(L)
is commutative because for any [B] € PS(R),
vf[B] =¢[T®B]=[K®T® B] =K ® B] = PS(¢)[B].
Since PS(¢) is injective, so is f. Now from A ~ (R(Q)/R,B), we

have [T ® A] = f[4] = f[(R(Q)/R,B)] = (T(Q)/T,B)), e, TO A ~
(T(Q)/T, B) which is a radical algebra. This completes the proof. O

REMARK. Although K(Q)/K is a radical extension, R({2) is not nec-
essarily radical over R because some powers of element z in {2 may not
contained in R, thus (R(Q?)/R, ) need not be a radical algebra. Hence
we take T as R(Q2) N K to make T(2)/T is a radical extension.

Theorem 10 implies that for [A] € PS(R) even if K ® A is a radical
K-algebra, A need not be a radical R-algebra. However there exists a
ring extension T of R which makes 7' ® A a radical T-algebra.
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