CENTRAL SEPARABLE ALGEBRAS OVER REGULAR DOMAIN

EUNMI CHOI AND HEISOOK LEE

ABSTRACT. Over a field k, every Schur k-algebra is a cyclotomic algebra due to Brauer-Witt theorem. Similarly every projective Schur k-division algebra is itself a radical algebra by Aljadeff-Sonn theorem. We study the two theorems over a certain commutative ring, and prove similar results over regular domain containing a field.

1. Introduction

Let R denote a commutative ring and U(R) denote the set of units in R. Let B(R) be the Brauer group of classes of central separable R-algebras [2]. A central separable R-algebra which is a homomorphic image of a group ring RG for some finite group G is called a Schur algebra, and the set of similar classes of Schur algebras forms the Schur subgroup S(R) of B(R).

The Brauer (1961) and Witt (1963) theorem ([11, p. 31]) shows that if R is a field k of characteristic 0 then every Schur k-algebra is similar to a cyclotomic algebra. Thus if C(k) is the set of all algebra classes of B(k) which are represented by a cyclotomic algebra over k then C(k) = S(k).

In [8], Lorenz and Opolka generalized Schur algebras by substituting group ring RG by twisted group ring RG^{α} for some 2-cocycle $\alpha \in Z^2(G, U(R))$ on which trivial action is defined. A central separable R-algebra that is a homomorphic image of RG^{α} is called a projective Schur algebra, and the set of similar classes of projective Schur algebras forms the projective Schur subgroup PS(R). Aljadeff and Sonn proved in [1]

Received November 21, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 16H05, 16S34, 20C.

Key words and phrases: Brauer algebra, Schur algebra, regular domain.

This study was supported by KOSEF 98-0701-02-01-5.

that if R=k is a field then a projective Schur division k-algebra is a radical algebra $(k(\Omega)/k,\alpha)$ which is a generalization of cyclotomic algebra. The Aljadeff-Sonn theorem is a counterpart of Brauer-Witt theorem with respect to projective Schur algebra.

The purpose of this paper is to study the Brauer-Witt and Aljadeff-Sonn theorems over a certain commutative ring. For any commutative ring R, the Brauer-Witt theorem may fail that a Schur R-algebra is not necessarily similar to a cyclotomic R-algebra [7]. One of our main theorem is that if R is a regular domain containing a field then every Schur R-algebra is similar to a cyclotomic algebra. In studying the Aljadeff-Sonn theorem with projective Schur R-algebras, we do not have a corresponding situation: for a projective Schur R-algebra A and for the field of quotient K of R, even though $K \otimes A$ is a radical K-algebra, A need not be a radical R-algebra. However we prove that there is a ring extension T of R such that $T \otimes A$ is a radical T-algebra.

In this paper we use the usual notations: for two central separable R-algebras A and B, we denote by $A \sim B$ if A and B are similar. The similar class of central separable R-algebras A is denoted by $[A] \in B(R)$. Let U(R) be the set of units in R and ε_n be a primitive n-th root of unity for n > 0.

2. Schur Algebra over Ring

Let $\phi: R \to T$ be a homomorphism of commutative rings. Then there are induced homomorphisms over Brauer and Schur groups

$$B(\phi): B(R) \to B(T)$$
 and $S(\phi): S(R) \to S(T)$

which are defined by tensor product that $[A] \to [T \otimes A]$. In case that T is a quotient field of R, if $B(\phi)$ is a monomorphism then so is $S(\phi)$. However $S(\phi)$ need not always be a monomorphism [2]. Of course the map $B(R) \to B(T)$ may not be a monomorphism while $S(R) \to S(T)$ is a monomorphism [5].

LEMMA 1. ([9, (6.19)]) Let R be a regular domain with quotient field K. Then $B(R) \to B(K)$ is a monomorphism. Thus so is $S(R) \to S(K)$.

Suppose that T is a Galois ring extension of R with Galois group $\operatorname{Gal}(T/R) = G$ (refer to [6, (3.1.2)]). For the algebra $(T/R, \alpha) = \sum_{\sigma \in G} T u_{\sigma}$ having T-basis $\{u_{\sigma} | \sigma \in G\}$ such that $u_{\sigma}x = \sigma(x)u_{\sigma}$ and $u_{\sigma}u_{\tau} = \alpha(\sigma, \tau)u_{\sigma\tau}$ for $x \in T$, $\sigma, \tau \in G$ where each $\alpha(\sigma, \tau) \in U(T)$, α is a 2-cocycle in $Z^2(T/R, U(T))$ on which natural Galois action is defined, and $(T/R, \alpha)$ is called a crossed product algebra.

Assume that the separable closure of R contains a primitive root of unity ε and that the cyclotomic extension $T=R(\varepsilon)$ of R is a Galois extension of R in the separable closure with Galois group $G=\operatorname{Gal}(T/R)$. Then the crossed product algebra $(T/R,\alpha)$ where $\alpha\in Z^2(T/R,U(T))$ has values in $\langle\varepsilon\rangle$ is called the cyclotomic algebra. And there is a central group extension H of $\langle\varepsilon\rangle$ by G determined by the cocycle α , and the natural homomorphism from RH onto $(R(\varepsilon)/R,\alpha)$, thus $[(R(\varepsilon)/R,\alpha)]$ belongs to S(R).

Let S'(R) denote the set of similar classes of algebras of B(R) which are represented by a cyclotomic algebra over R. Then S'(R) is a subgroup of S(R) [7]. Due to Brauer-Witt theorem if R = k is a field then S'(k) = C(k) = S(k). However S'(R) may be proper in S(R) [7]. We now prove the Brauer-Witt theorem over regular domain containing a field.

THEOREM 2. Let R be a regular domain containing a field. Then every Schur algebra over R is similar to a cyclotomic R-algebra.

Proof. Let [A] be any element in S(R). If $\operatorname{char} R > 0$ then S(R) is trivial (refer to [7]) thus we have nothing to do. We now assume $\operatorname{char} R = 0$.

If K is the field of quotient of R then $B(\phi)$: $B(R) \to B(K)$ is a monomorphism by Lemma 1. Thus as an element [A] in B(R), we have

(1)
$$B(\phi)[A] = [K \otimes A] \in B(K).$$

Since A is the homomorphic image of RG for some finite group G, $K \otimes A$ is a homomorphic image of $K \otimes RG = KG$ thus $[K \otimes A] \in S(K)$. Because of the Brauer-Witt theorem, we may write

$$K \otimes A \sim (K(\varepsilon_n)/K, \beta)$$
 for $\beta \in Z^2(K(\varepsilon_n)/K, K(\varepsilon_n)^*)$

where β has values in $\langle \varepsilon_n \rangle$ for a root of unity ε_n (n > 0).

Since char R=0, R contains the field of rational numbers Q thus any nonzero integer is unit in R, i.e., $n \in U(R)$. This means that $R(\varepsilon_n)$ is a separable extension of R. By restriction $\mathcal{G} = \operatorname{Gal}(K(\varepsilon_n)/K)$ can

be considered as a group of automorphisms of $R(\varepsilon_n)$. And since R is integrally closed, \mathcal{G} fixes exactly R, i.e., $R(\varepsilon_n)^{\mathcal{G}} = R$. Thus $R(\varepsilon_n)$ is a Galois extension of R with Galois group \mathcal{G} by [6, (3.1.2)]. Now considering β as an element in $Z^2(R(\varepsilon_n)/R, U(R(\varepsilon_n)))$, we have a cyclotomic algebra $(R(\varepsilon_n)/R, \beta)$, thus $[(R(\varepsilon_n)/R, \beta)] \in B(R)$ and

$$B(\phi)[(R(\varepsilon_n)/R,\beta)] = [(K(\varepsilon_n)/K,\beta)] = [K \otimes A].$$

Since $B(\phi)$ is injective, comparing this with (1), we have $[A] = [(R(\varepsilon_n)/R, \beta)]$ and $A \sim (R(\varepsilon_n)/R, \beta)$. This completes the proof.

This means that S(R) = S'(R) if R is a regular domain containing a field.

COROLLARY 3. Let R, K be as in Theorem 2. Then S(R) is isomorphic to S(K).

Proof. Let [A] be an element in S(R). Due to Theorem 2, A is similar to a cyclotomic R-algebra $(R(\varepsilon)/R, \beta)$ for some root of unity ε , and $S(\phi)$ maps $[A] = [(R(\varepsilon)/R, \beta)]$ to $[(K(\varepsilon)/K, \beta)]$.

Conversely any Schur K-algebra B is similar to $(K(\varepsilon_n)/K, \alpha)$ for n > 0 by Brauer-Witt theorem. If we consider $(R(\varepsilon_n)/R, \alpha)$ then it is a central separable R-algebra as we saw in the proof of Theorem 2, hence is a Schur R-algebra. Moreover $S(\phi)[(R(\varepsilon_n)/R, \alpha)] = [(K(\varepsilon_n)/K, \alpha)]$ thus $S(\phi)$ is an isomorphism.

For $[A] \in B(R)$ and for a ring extension T of R, we say T splits A if $[T \otimes A]$ is trivial in B(T). Let B(T/R) denote the subset of B(R) whose elements are splitted by T. Then B(T/R) is a subgroup of B(R) and is indeed the kernel of $B(R) \to B(T)$. By substituting B(R) by S(R), we write S(T/R) for the subgroup of S(R) consisting of Schur R-algebras splitted by T.

Let K be the quotient field of R. For a ring extension T of R, let F be the quotient field of T. Then F is an extension of K, and we consider B(K/R), B(T/R), B(F/R), B(F/T) and B(F/K). The first three are subgroups of B(R), and B(T/R), B(K/R) are subgroups of B(F/R).

THEOREM 4. Let R be a commutative ring with ring extension T. Let K and F be the quotient fields of R, T respectively. Then B(F/R)/B(T/R) is isomorphic to a subgroup of B(F/T). Moreover if R is a regular domain then there are monomorphisms $B(T/R) \to B(F/K)$ and $B(F/R) \to B(F/K)$.

Proof. Consider the following diagram

$$\begin{array}{ccc} B(T) & \stackrel{\psi}{\rightarrow} & B(F) \\ f \uparrow & & \uparrow g \\ B(R) & \stackrel{\phi}{\rightarrow} & B(K) \end{array}$$

where f, g, ψ and ϕ are homomorphisms naturally defined by tensor product. Then it is a commutative diagram because

$$\psi f[A] = [F \otimes T \otimes A] = [F \otimes A] = g\phi[A], \text{ for } [A] \in B(R).$$

Let $\mu: B(F/R) \to B(F/T)$ be a map defined by $[A] \mapsto [T \otimes A]$. Clearly if $[F \otimes A] = 1$ then $[F \otimes T \otimes A] = 1$ and μ is a homomorphism. Moreover

$$\ker \mu = \{ [A] \in B(F/R) | [T \otimes A] = 1 \in B(F/T) \}$$

$$= \{ [A] \in B(R) | [F \otimes A] = 1, [T \otimes A] = 1, [F \otimes T \otimes A] = 1 \}$$

$$= \{ [A] \in B(T/R) \} = B(T/R).$$

Thus B(F/R)/B(T/R) is isomorphic to a subgroup of B(F/T).

If $[A] \in B(T/R)$ then $[T \otimes A] = 1$ in B(T) and $[K \otimes A] \in B(K)$, moreover $[K \otimes A] \in B(F/K)$ because $[F \otimes K \otimes A] = [F \otimes A] = g\phi[A] = \psi f[A] = \psi[T \otimes A] = [1]$. Thus we have a homomorphism $\chi : B(T/R) \to B(F/K)$ defined by $[A] \mapsto [K \otimes A]$. Now

$$\ker \chi = \{ [A] \in B(T/R) | \ [K \otimes A] = 1 \in B(F/K) \} \subseteq B(K/R).$$

Since B(K/R) is the kernel of $B(R) \to B(K)$ which is injective due to Lemma 1, B(K/R) and ker χ are trivial hence χ is a monomorphism. Similarly there is a homomorphism $B(F/R) \to B(F/K)$ with kernel B(K/R) which is zero.

COROLLARY 5. Suppose that R is a Dedekind domain with the quotient field K. Let F be a finite dimensional extension of K and T be an integral closure of R contained in F. Then $B(K/R) \cong B(F/T) = 1$ and $B(F/R) \cong B(T/R)$.

Proof. If R is a Dedekind domain and K is the quotient field of R then $B(R) \to B(K)$ is a monomorphism (refer to [6, Lemma V.2.2]). And it is a well known fact that the extension T of the Dedekind domain is itself a Dedekind domain having quotient field as F (refer to [10, (4.4)]). Thus $B(T) \to B(F)$ is also a monomorphism, hence B(K/R) and B(F/T) are

trivial. Moreover since B(F/R)/B(T/R) is isomorphic to a subgroup of B(F/T) by Theorem 4, we have $B(F/R) \cong B(T/R)$.

We remark that by substituting Brauer groups B(K/R) and B(F/R) by Schur groups S(K/R), S(F/R) respectively, we have similar results to Theorem 4 and Corollary 5 by Lemma 1. Furthermore we have the next corollary.

COROLLARY 6. Let R be a regular domain containing a field and let T, K and F are the same as in Theorem 4. Then $S(F/R) \cong S(F/K) \cong S(T/R)$.

Proof. Due to Corollary 3, $S(R) \cong S(K)$ thus $S(F/R) \cong S(F/K)$.

Therefore under the same assumptions of Corollary 5, S(F/K), S(F/R) and S(T/R) are all isomorphic.

3. Projective Schur Algebra over Ring

A central separable R-algebra is called a projective Schur R-algebra if it is a homomorphic image of twisted group ring RG^{α} for some finite group G and $\alpha \in Z^2(G, U(R))$. A set of similar classes of projective Schur R-algebras forms a group, called projective Schur group PS(R) (refer to [3], [4]). We recall that RG^{α} is separable if $|G| \in U(R)$.

THEOREM 7. Let $\phi: R \to T$ be a homomorphism of commutative rings. If ϕ maps unity of R to unity of T then there is an induced group homomorphism $PS(\phi): PS(R) \to PS(T)$ defined by $[A] \mapsto [T \otimes_R A]$ for $[A] \in PS(R)$.

Proof. For $[A] \in PS(R)$, there is a surjection $\psi: RG^{\alpha} \to A$ for some finite group G and $\alpha \in Z^2(G,U(R))$. Let $\{u_g|g \in G\}$ be a basis of RG^{α} satisfying $u_gu_x = \alpha(g,x)u_{gx}$ for $g,x \in G$. By setting $\beta = \phi\alpha$ defined by $\beta(x,y) = \phi(\alpha(x,y))$ for all $x,y \in G$, it is clear that β is a 2-cocycle in $Z^2(G,U(T))$. If we consider the twisted group ring TG^{β} with basis $\{v_g|g \in G\}$ such that $v_gv_x = \beta(g,x)v_{gx}$ then the algebra can be regarded as an R-module by the action $r \cdot \sum_{g \in G} t_gv_g = \sum_{g \in G} f(r)t_gv_g$ for $r \in R$, $t_g \in T$. And we can see that $T \otimes RG^{\alpha}$ is isomorphic to TG^{β} as R-modules where the tensor map $T \otimes RG^{\alpha} \to TG^{\beta}$ is defined by $t \otimes \sum_{g \in G} r_gu_g \mapsto \sum_{g \in G} tf(r_g)v_g$ for $t \in T$ and $r_g \in R$. This shows that

there is a surjection $TG^{\beta} \to T \otimes_R A$, hence $[T \otimes A] \in PS(T)$. Moreover since $T \otimes_R (A \otimes_R B) = (T \otimes_R A) \otimes_T (T \otimes_R B)$ for $[A], [B] \in PS(R)$, it follows that $PS(\phi)$ is a homomorphism.

We call $PS(\phi)$ a projective Schur homomorphism. In case of regular domain, the next corollary follows immediately from Lemma 1.

COROLLARY 8. Let R be a regular domain and K be the quotient field of R. Then $PS(R) \rightarrow PS(K)$ is a monomorphism.

The role of cyclotomic field extension in the theory of Schur algebra can be replaced by the radical field extension in the theory of projective Schur algebra. When we say $L=k(\Omega)$ is a radical extension of k, we mean that $\Omega < L^*$ and $\Omega k^*/k^*$ is a torsion group, that is for any $x \in \Omega$, $x \mod k^*$ is of finite order in $\Omega k^*/k^*$. A crossed product algebra $A=(L/k,\alpha)$ is called a radical k-algebra if $L=k(\Omega)$ is a finite radical $\mathrm{Gal}(L/k)$ -Galois extension over k (i.e., Ω is a $\mathrm{Gal}(L/k)$ -invariant subgroup of L^*) and $\bar{\alpha} \in H^2(L/k, L^*)$ is the image of some $\bar{\alpha}' \in H^2(L/k,\Omega)$ (refer to [1]). Moreover if the Galois group is abelian then A is called an abelian radical algebra. A radical algebra is a projective Schur k-algebra [1], and an analog of Brauer-Witt theorem was proved as follow.

LEMMA 9. [1] Let k be any field. Then every projective Schur division k-algebra is an abelian radical algebra over k.

Over a commutative ring R, a crossed product algebra $(T/R, \alpha)$ is a radical R-algebra if $T = R(\Omega)$ is a finite radical $\operatorname{Gal}(T/R)$ -Galois ring extension of R (i.e., Ω is a $\operatorname{Gal}(T/R)$ -invariant subgroup of U(T) such that $\Omega U(R)/U(R)$ is finite) and $\bar{\alpha} \in H^2(T/R, U(T))$ is an image of some $\bar{\alpha}' \in H^2(T/R, \Omega)$. By considering the group extension Γ of Ω by $\operatorname{Gal}(T/R)$ determined by α' , the algebra $(T/R, \alpha)$ is a projective Schur R-algebra.

We study similar property of Lemma 9 over a certain commutative ring.

THEOREM 10. Let R be a regular domain of characteristic 0 containing a field and K be the quotient field of R. Let A be a projective Schur R-algebra such that $K \otimes A$ is division over K. Then there is a ring extension T of R such that $T \otimes A$ is similar to a radical T-algebra.

Proof. For $[A] \in PS(R)$, there is a finite group G and $\alpha \in Z^2(G, U(R))$ such that A is a homomorphic image of RG^{α} . For quotient field K of R, the usual inclusion $\phi: R \to K$ produces monomorphisms

$$B(\phi): B(R) \to B(K)$$
 and $PS(\phi): PS(R) \to PS(K)$

defined by tensor product, and $K \otimes RG^{\alpha} = KG^{\alpha}$ represents $K \otimes A$.

Since $K \otimes A$ is a projective Schur K-algebra which is division, it is an abelian radical K-algebra by Lemma 9 thus we may write

$$K \otimes A = (K(\Omega)/K, \beta)$$

where $K(\Omega)$ is an abelian radical extension of K and $\bar{\beta} \in H^2(K(\Omega)/K, K(\Omega)^*)$ is the image of some $\bar{\beta}' \in H^2(K(\Omega)/K, \Omega)$ under the inclusion $\Omega \hookrightarrow (K(\Omega))^*$. For our convenience we write the abelian Galois group $\mathrm{Gal}(K(\Omega)/K)$ by \mathcal{G} .

Consider the ring extension $R(\Omega)$ over R. By restriction, \mathcal{G} is the group of automorphisms of $R(\Omega)$. And since R is a regular domain, R is integrally closed [9, (6.23)] thus \mathcal{G} fixes exactly R, i.e., $R(\Omega)^{\mathcal{G}} = R$. Moreover since char R = 0, R contains the field of rational numbers Q hence the order $|\mathcal{G}|$ is unit in R. This implies that $R(\Omega)$ is a Galois extension of R with Galois group $\operatorname{Gal}(R(\Omega)/R)$ by [6, (3.1.2)]. Denoting the restriction of $\bar{\beta}' \in H^2(K(\Omega)/K, \Omega)$ by the same notation $\bar{\beta}' \in H^2(R(\Omega)/R, \Omega)$, the crossed product algebra $(R(\Omega)/R, \beta')$ is a central separable R-algebra. By regarding $\bar{\beta}$ as an image of $\bar{\beta}' \in H^2(R(\Omega)/R, \Omega)$ under the inclusion $\Omega \hookrightarrow U(R(\Omega)) \hookrightarrow (K(\Omega))^*$, we can consider $(R(\Omega)/R, \beta)$ with $\bar{\beta} \in H^2(R(\Omega)/R, U(R(\Omega)))$. Furthermore since $B(\phi)$ is a monomorphism and since

$$B(\phi)[(R(\Omega)/R,\beta)] = [(K(\Omega)/K,\beta)] = [K \otimes A] = B(\phi)[A],$$

it follows that the R-algebras A and $(R(\Omega)/R, \beta)$ are similar.

Let $T=R(\Omega)\cap K$. Then $R\subset T$ and $T(\Omega)=(R(\Omega)\cap K)(\Omega)=R(\Omega)$. Since $K(\Omega)$ is radical over K, there is n>0 such that $x^n\in K$ for any $x\in\Omega$. Hence $x^n\in R(\Omega)\cap K=T$, this shows $T(\Omega)$ is a radical extension of T. Moreover the extension $T(\Omega)/T$ is finite and abelian because $\mathrm{Gal}(T(\Omega)/T)<\mathrm{Gal}(R(\Omega)/R)$. By using the same notation β abusively for the restriction of β to $\mathrm{Gal}(T(\Omega)/T)$, the crossed product algebra $T(\Omega)/T$ is a radical T-algebra hence is a projective Schur algebra in T

Central separable algebras over regular domain

If we consider the quotient field L of T then L is isomorphic to K thus PS(L) = PS(K). Moreover since T is a regular domain, there is a monomorphism $\psi: PS(T) \to PS(L)$. And from the inclusion $R \to T$, we also have a homomorphism $f: PS(R) \to PS(T)$ where both ψ and f are defined by tensor products. Thus the following diagram

$$\begin{array}{cccc} PS(R) & \stackrel{PS(\phi)}{\rightarrow} & PS(K) \\ f \downarrow & & \parallel \\ PS(T) & \stackrel{\psi}{\rightarrow} & PS(L) \end{array}$$

is commutative because for any $[B] \in PS(R)$,

$$\psi f[B] = \psi[T \otimes B] = [K \otimes T \otimes B] = [K \otimes B] = PS(\phi)[B].$$

Since $PS(\phi)$ is injective, so is f. Now from $A \sim (R(\Omega)/R, \beta)$, we have $[T \otimes A] = f[A] = f[(R(\Omega)/R, \beta)] = [(T(\Omega)/T, \beta)]$, i.e., $T \otimes A \sim (T(\Omega)/T, \beta)$ which is a radical algebra. This completes the proof.

REMARK. Although $K(\Omega)/K$ is a radical extension, $R(\Omega)$ is not necessarily radical over R because some powers of element x in Ω may not contained in R, thus $(R(\Omega)/R,\beta)$ need not be a radical algebra. Hence we take T as $R(\Omega) \cap K$ to make $T(\Omega)/T$ is a radical extension.

Theorem 10 implies that for $[A] \in PS(R)$ even if $K \otimes A$ is a radical K-algebra, A need not be a radical R-algebra. However there exists a ring extension T of R which makes $T \otimes A$ a radical T-algebra.

References

- E. Aljadeff, J. Sonn, Projective Schur division algebras are abelian crossed products, J. Algebra 163 (1994), 795-805.
- [2] M. Auslander, O.Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- [3] E. Choi, H. Lee, Projective Schur division algebras, Comm. in Algebra 26 (1998), no. 5, 1399-1407.
- [4] _______, Projective Schur algebras over a field of positive characteristic, Bull. Austral. Math. Soc. 58 (1998), 103-106.
- [5] F. DeMeyer, The Brauer group of a ring modulo an ideal, Rocky Mountain J. of Math. 6 (1976), no. 2, 191-198.
- [6] F. DeMeyer, E. Ingraham, Separable algebras over commutative rings, vol. 181, Lecture notes in mathematics, Springer-Verlag, Berlin, 1970.
- [7] F. DeMeyer, R. Mollin, The Schur group of a commutative ring, J. Pure and Appl. Algebra 35 (1985), 117-122.

- [8] F. Lorenz, H. Opolka, Einfache Algebren und Projektive Darstellungen über Zahlköpern, Math. Z. 162 (1978), 175-182.
- [9] M. Orzech, C. Small, *The Brauer group of commutative rings*, Lecture notes in pure and appl. math., 11 Marcel Dekker, New York, 1975.
- [10] I. Reiner, Maximal orders, Academic Press, London, 1975.
- [11] T. Yamada, The Schur subgroup of the Brauer group, Lecture notes in mathematics, 397 Springer-Verlag, Berlin, 1974.

EUNMI CHOI, DEPARTMENT OF MATHEMATICS; HAN NAM UNIVERSITY, TAEJON, KOREA

E-mail: emc@math.hannam.ac.kr

HEISOOK LEE, DEPARTMENT OF MATHEMATICS, EWHA WOMANS UNIVERSITY, SEOUL, KOREA

E-mail: hsllee@mm.ewha.ac.kr