# ORTHOGONAL POLYNOMIALS RELATIVE TO LINEAR PERTURBATIONS OF QUASI-DEFINITE MOMENT FUNCTIONALS

K. H. KWON, D. W. LEE, AND J. H. LEE

ABSTRACT. Consider a symmetric bilinear form defined on  $\Pi \times \Pi$  by  $\langle f, g \rangle_{\lambda,\mu} = \langle \sigma, fg \rangle + \lambda L[f](a)L[g](a) + \mu M[f](b)M[g](b)$ ,

where  $\sigma$  is a quasi-definite moment functional, L and M are linear operators on  $\Pi$ , the space of all real polynomials and  $a,b,\lambda$ , and  $\mu$  are real constants. We find a necessary and sufficient condition for the above bilinear form to be quasi-definite and study various properties of corresponding orthogonal polynomials. This unifies many previous works which treated cases when both L and M are differential or difference operators. Finally, infinite order operator equations having such orthogonal polynomials as eigenfunctions are given when  $\mu=0$ .

## 1. Introduction

All polynomials in this work are assumed to be real polynomials in one variable and we let  $\Pi$  be the space of all real polynomials. We let  $\deg(\pi)$  be the degree of a polynomial  $\pi(x)$  with the convention  $\deg(0) = -1$ . By a polynomial system (PS), we mean a sequence of polynomials  $\{P_n(x)\}_{n=0}^{\infty}$  with  $\deg(P_n) = n, n \geq 0$ .

Let L and M be any two linear operators defined on  $\Pi$ . We now consider a symmetric bilinear form on  $\Pi \times \Pi$  given by

$$(1.1) \qquad \langle f,g\rangle_{\lambda,\mu} := \langle \sigma,fg\rangle + \lambda L[f](a)L[g](a) + \mu M[f](b)M[g](b), \ (f,g\in\Pi)$$

Received May 21, 1998. Revised January 10, 1999.

<sup>1991</sup> Mathematics Subject Classification: 33C45.

Key words and phrases: orthogonal polynomials, linear perturbation, quasi-definiteness.

where  $\sigma$  is a moment functional (i.e., a linear functional on  $\Pi$ ) and  $\lambda$ ,  $\mu$ , a, and b are real numbers. We say that the bilinear form  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  is quasi-definite (respectively, positive-definite) if

$$\Delta_n := \left| egin{array}{cccc} \langle 1,1
angle_{\lambda,\mu} & \langle 1,x
angle_{\lambda,\mu} & \cdots & \langle 1,x^n
angle_{\lambda,\mu} \ \langle x,1
angle_{\lambda,\mu} & \langle x,x
angle_{\lambda,\mu} & \cdots & \langle x,x^n
angle_{\lambda,\mu} \ dots & dots & \ddots & dots \ \langle x^n,1
angle_{\lambda,\mu} & \langle x^n,x
angle_{\lambda,\mu} & \cdots & \langle x^n,x^n
angle_{\lambda,\mu} \ \end{array} 
ight| 
onumber \ \left( ext{respectively}, \quad \Delta_n > 0 
ight) \quad n > 0.$$

When  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  is quasi-definite (respectively, positive-definite), there is a unique monic PS  $\{R_n(x)\}_{n=0}^{\infty}$  such that

$$\langle R_m, R_n \rangle_{\lambda \mu} = K_n \delta_{mn}, \quad m \text{ and } n > 0,$$

where  $K_n$  is a non-zero (respectively, a positive) constant and vice versa. In this case, we call  $\{R_n(x)\}_{n=0}^{\infty}$  a monic orthogonal polynomial system (MOPS) relative to  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  (or a MOPS relative to  $\sigma$  when  $\lambda = \mu = 0$ ). When L = M = Id, the identity operator,

$$\langle f,g\rangle_{\lambda,\mu}=\langle \sigma+\lambda\delta(x-a)+\mu\delta(x-b),fg\rangle,\ f\ \text{and}\ g\in\Pi$$

is just a point mass perturbation of  $\sigma$ , which is already handled by many authors ([5, 6, 11, 14, 15]). When L and M are differential or difference operators,  $\{R_n(x)\}_{n=0}^{\infty}$  is called a Sobolev-type orthogonal polynomials (see [1, 7, 8] and references therein). Generalizing these examples, we consider arbitrary linear operators L and M by which we perturb  $\sigma$ . We first find a necessary and sufficient condition for  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  to be quasidefinite (see Theorem 2.2), which extends results in [6, 8, 14], in which L = M = Id or  $\mu = 0$ . We then express  $\{R_n(x)\}_{n=0}^{\infty}$  in terms of orthogonal polynomials  $\{P_n(x)\}_{n=0}^{\infty}$  relative to  $\sigma$  and discuss their algebraic properties such as long term recurrence relation, quasi-orthogonality, and semi-classical character, including several non-standard examples. Finally, when  $\mu = 0$  and  $\{P_n(x)\}_{n=0}^{\infty}$  are eigenfunctions of a certain linear operator on  $\Pi$ , we show that  $\{R_n(x)\}_{n=0}^{\infty}$  must also be eigenfunctions of a possibly infinite order operator equation.

This last result (see Theorem 4.1) explains many previous works ([1, 3, 7, 9, 10]) in a unified manner. Bavinck [2] considered a similar problem in a different viewpoint: perturb not the moment functional but the PS  $\{P_n(x)\}_{n=0}^{\infty}$  (which need not be orthogonal) by another PS  $\{Q_n(x)\}_{n=0}^{\infty}$ .

## 2. Necessary and Sufficient Conditions

We always assume that  $\sigma$  is quasi-definite and  $\{P_n(x)\}_{n=0}^{\infty}$  is the MOPS relative to  $\sigma$ . Let  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  be the bilinear form as in (1.1). We set for p and  $q = 0, 1, \cdots$ 

(2.1) 
$$K_n^{(p,q)}(x,y) = \sum_{j=0}^n \frac{L^p[P_j](x)L^q[P_j](y)}{\langle \sigma, P_j^2 \rangle}$$

(2.2) 
$$G_n^{(p,q)}(x,y) = \sum_{j=0}^n \frac{L^p[P_j](x)M^q[P_j](y)}{\langle \sigma, P_j^2 \rangle}$$

(2.3) 
$$J_n^{(p,q)}(x,y) = \sum_{j=0}^n \frac{M^p[P_j](x)M^q[P_j](y)}{\langle \sigma, P_j^2 \rangle},$$

where  $L^{p+1} = L[L^p]$  and  $M^{p+1} = M[M^p]$ . Then

$$K_n^{(0,q)}(x,y) = G_n^{(q,0)}(y,x)$$
 and  $J_n^{(0,q)}(x,y) = G_n^{(0,q)}(x,y)$ .

PROPOSITION 2.1. The kernels  $K_n^{(p,q)}(x,y)$ ,  $G_n^{(p,q)}(x,y)$  and  $J_n^{(p,q)}(x,y)$  as in  $(2.1) \sim (2.3)$  have reproducing properties, i.e.,

$$(2.4) \quad \langle \sigma, K_n^{(0,q)}(x,y)\psi(x) \rangle = \langle \sigma, G_n^{(q,0)}(y,x)\psi(x) \rangle = L^q[\psi](y)$$

$$(2.5) \qquad \langle \sigma, J_n^{(0,q)}(x,y)\psi(x)\rangle \quad = \quad \langle \sigma, G_n^{(0,q)}(x,y)\psi(x)\rangle = M^q[\psi](y)$$

for any polynomial  $\psi(x)$  of degree  $\leq n$ .

*Proof.* We set  $\psi(x) = \sum_{k=0}^{n} c_k P_k(x)$ . Then

$$\langle \sigma, K_n^{(0,q)}(x,y)\psi(x)\rangle = \langle \sigma, G_n^{(q,0)}(y,x)\psi(x)\rangle = \sum_{j=0}^n \frac{L^q[P_j](y)}{\langle \sigma, P_j^2 \rangle} \langle \sigma, P_j \psi \rangle$$

$$=\sum_{j=0}^n\frac{L^q[P_j](y)}{\langle\sigma,P_j^2\rangle}\langle\sigma,P_j\sum_{k=0}^nc_kP_k\rangle=\sum_{j=0}^nc_jL^q[P_j](y)=L^q[\psi](y)$$

by the orthogonality of  $\{P_n(x)\}_{n=0}^{\infty}$  relative to  $\sigma$ . Hence we have (2.4). (2.5) can be proved similarly.

Now, we have:

THEOREM 2.2. The bilinear form  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  in (1.1) is quasi-definite if and only if

$$d_n := \left| egin{array}{ccc} 1 + \lambda K_n^{(1,1)}(a,a) & \mu G_n^{(1,1)}(a,b) \ \lambda G_n^{(1,1)}(a,b) & 1 + \mu J_n^{(1,1)}(b,b) \end{array} 
ight| 
eq 0, \quad n \geq 0.$$

In this case, MOPS  $\{R_n(x)\}_{n=0}^{\infty}$  is given by (2.6)

$$R_{n}(x) = P_{n}(x) - \frac{\lambda}{d_{n-1}} \begin{vmatrix} L[P_{n}](a) & \mu G_{n-1}^{(1,1)}(a,b) \\ M[P_{n}](b) & 1 + \mu J_{n-1}^{(1,1)}(b,b) \end{vmatrix} G_{n-1}^{(1,0)}(a,x) - \frac{\mu}{d_{n-1}} \begin{vmatrix} \lambda K_{n-1}^{(1,1)}(a,a) & L[P_{n}](a) \\ \lambda G_{n-1}^{(1,1)}(a,b) & M[P_{n}](b) \end{vmatrix} G_{n-1}^{(0,1)}(x,b), \quad n \ge 0,$$

where  $d_{-1} = 1$ .

Moreover, we have

(2.7) 
$$\langle R_n, R_n \rangle_{\lambda,\mu} = \langle R_n, P_n \rangle_{\lambda,\mu} = \frac{d_n}{d_{n-1}} \langle \sigma, P_n^2 \rangle.$$

*Proof.* Assume that the bilinear form  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  in (1.1) is quasi-definite and let  $\{R_n(x)\}_{n=0}^{\infty}$  be the MOPS relative to  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$ . Then we may write  $R_n(x)$  as

$$R_n(x) = P_n(x) + \sum_{j=0}^{n-1} C_j^n P_j(x), \quad n \ge 0.$$

By the orthogonality of  $\{R_n(x)\}_{n=0}^{\infty}$  and  $\{P_n(x)\}_{n=0}^{\infty}$ , we have for  $0 \le j \le n-1$ 

$$C_j^n = \frac{\langle \sigma, P_j R_n \rangle}{\langle \sigma, P_j^2 \rangle} = \frac{-\lambda L[R_n](a) L[P_j](a) - \mu M[R_n](b) M[P_j](b)}{\langle \sigma, P_j^2 \rangle}$$

and so

$$(2.8) \quad R_n(x) = P_n(x) - \lambda L[R_n](a)G_{n-1}^{(1,0)}(a,x) - \mu M[R_n](b)G_{n-1}^{(0,1)}(x,b).$$

Acting L and M to (2.8) and evaluating at x = a and x = b respectively, we obtain

(2.9)

$$\left(\begin{array}{ccc} 1 + \lambda K_{n-1}^{(1,1)}(a,a) & \mu G_{n-1}^{(1,1)}(a,b) \\ \lambda G_{n-1}^{(1,1)}(a,b) & 1 + \mu J_{n-1}^{(1,1)}(b,b) \end{array}\right) \left(\begin{array}{c} L[R_n](a) \\ M[R_n](b) \end{array}\right) = \left(\begin{array}{c} L[P_n](a) \\ M[P_n](b) \end{array}\right),$$

$$n \ge 0$$

where  $G_{-1}^{(1,1)}(x,y)=J_{-1}^{(1,1)}(x,y)=0.$  We now show that  $d_n\neq 0$  for  $n\geq 0$  by induction on n. For n=0,

$$d_0 = 1 + \mu \frac{(M[1](b))^2}{\langle \sigma, 1 \rangle} + \lambda \frac{(L[1](a))^2}{\langle \sigma, 1 \rangle} = \frac{\langle 1, 1 \rangle_{\lambda, \mu}}{\langle \sigma, 1 \rangle} \neq 0.$$

Assume that  $d_n \neq 0$  for  $0 \leq n \leq m$  for some integer  $m \geq 0$ . Then, the system (2.9) is uniquely solvable for  $L[R_n](a)$  and  $M[R_n](b)$  as

$$(2.10) \quad \begin{pmatrix} L[R_n](a) \\ M[R_n](b) \end{pmatrix}$$

$$= \frac{1}{d_{n-1}} \begin{pmatrix} 1 + \mu J_{n-1}^{(1,1)}(b,b) & -\mu G_{n-1}^{(1,1)}(a,b) \\ -\lambda G_{n-1}^{(1,1)}(a,b) & 1 + \lambda K_{n-1}^{(1,1)}(a,a) \end{pmatrix} \begin{pmatrix} L[P_n](a) \\ M[P_n](b) \end{pmatrix}$$

for  $0 \le n \le m+1$ . Substituting (2.10) into (2.8), we obtain (2.6). Hence (2.11)

$$\begin{split} \langle R_n, P_k \rangle_{\lambda,\mu} &= \langle \sigma, R_n P_k \rangle + \lambda L[R_n](a) L[P_k](a) + \mu M[R_n](b) M[P_k](b) \\ &= \langle \sigma, P_n P_k \rangle + \lambda L[R_n](a) L[P_k](a) \delta_{kn} + \mu M[R_n](b) M[P_k](b) \delta_{kn} \\ &= \frac{d_n}{d_{n-1}} \langle \sigma, P_n^2 \rangle \delta_{kn}, \ 0 \leq k \leq n \leq m+1 \end{split}$$

since

$$\langle \sigma, K_{n-1}^{(0,1)}(x,a)P_k(x) \rangle = L[P_k](a)(1 - \delta_{kn}),$$
  
 $\langle \sigma, J_{n-1}^{(0,1)}(x,b)P_k(x) \rangle = L[P_k](b)(1 - \delta_{kn}),$ 

and

$$d_{n} = d_{n-1} + \mu \frac{\{1 + \lambda K_{n-1}^{(1,1)}(a,a)\} (M[P_{n}](b))^{2}}{\langle \sigma, P_{n}^{2} \rangle} + \lambda \frac{\{1 + \mu J_{n-1}^{(1,1)}(b,b)\} (L[P_{n}](a))^{2}}{\langle \sigma, P_{n}^{2} \rangle}.$$

In particular,

$$d_{m+1} = \frac{\langle R_{m+1}, R_{m+1} \rangle_{\lambda,\mu}}{\langle \sigma, P_{m+1}^2 \rangle} d_m \neq 0.$$

Conversely, assume  $d_n \neq 0$ ,  $n \geq 0$  and define  $R_n(x)$  by (2.6). Then  $\{R_n(x)\}_{n=0}^{\infty}$  is a monic PS and (2.8) holds. Then the equation (2.11) implies that  $\{R_n(x)\}_{n=0}^{\infty}$  is the MOPS relative to  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  so that  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$ is quasi-definite.

COROLLARY 2.3. If  $\sigma$  is positive-definite, then  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  is also positive-definite if and only if  $d_n > 0$ ,  $n \geq 0$ .

Some special cases of Theorem 2.2 were handled in [6, 8, 14, 15] when L = Id and  $\mu = 0$  or  $L = D^r$ ,  $M = D^s$ , where  $D = \frac{d}{dx}$  and r and s are non-negative integers.

COROLLARY 2.4. When  $\mu = 0$ ,  $\langle \cdot, \cdot \rangle_{\lambda} := \langle \cdot, \cdot \rangle_{\lambda,\mu}$  is quasi-definite if and only if  $d_n := 1 + \lambda K_n^{(1,1)}(a,a) \neq 0$ ,  $n \geq 0$ . In this case, we have

$$R_n(x) = P_n(x) - rac{\lambda L[P_n](a)}{1 + \lambda K_{n-1}^{(1,1)}(a,a)} G_{n-1}^{(1,0)}(a,x)$$

and

$$\langle R_n, R_n \rangle_{\lambda} = rac{1 + \lambda K_n^{(1,1)}(a,a)}{1 + \lambda K_{n-1}^{(1,1)}(a,a)} \langle \sigma, P_n^2 \rangle, \ n \geq 0.$$

From now on, we always assume that  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  is quasi-definite and let  $\{R_n(x)\}_{n=0}^{\infty}$  be the MOPS relative to  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$ . If there exists a polynomial  $\pi(x)$  of degree  $t(\geq 1)$  such that

(2.12) 
$$L[\pi\phi](a) = M[\pi\phi](b) = 0, \ \phi \in \Pi,$$

then

(2.13) 
$$\langle \pi \phi, \psi \rangle_{\lambda,\mu} = \langle \sigma, \pi \phi \psi \rangle = \langle \phi, \pi \psi \rangle_{\lambda,\mu}, \ \phi \text{ and } \psi \in \Pi.$$

For example, we have:

If  $L = D^r$ , where  $D = \frac{d}{dx}$  and  $r \ge 0$ , then

$$L[(x-a)^{r+1}f(x)](a) = 0, f \in \Pi.$$

If  $L = \Delta^r$ , where  $\Delta f(x) = f(x+1) - f(x)$  is the forward difference operator and  $r \geq 0$ , then

$$L\left[\prod_{k=0}^r(x-a-k)f(x)
ight](a)=0,\,\,f\in\Pi.$$

THEOREM 2.5. Assume that there exists a monic polynomial  $\pi(x)$  of degree  $t(\geq 1)$  satisfying (2.12). Then

(i) (Long term recurrence relation)

$$\pi(x)R_n(x) = \sum_{j=n-t}^{n+t} s_{nj}R_j(x)$$

where  $s_{nj} = \frac{\langle R_n, \pi R_j \rangle_{\lambda,\mu}}{\langle R_j, R_j \rangle_{\lambda,\mu}} = \frac{\langle \sigma, R_n \pi R_j \rangle}{\langle \sigma, R_j^2 \rangle} \frac{d_{j-1}}{d_j}, \ n-t \leq j \leq n+t \ (s_{n,n+t} = 1, s_{n,n-t} \neq 0, \ n \geq t);$ 

(ii) (Quasi-orthogonality relative to  $\sigma$ )

(2.14) 
$$\pi(x)R_n(x) = \sum_{j=n-t}^{n+t} r_{nj}P_j(x),$$

where  $r_{nj} = \frac{\langle \sigma, R_n \pi R_j \rangle}{\langle \sigma, R_j^2 \rangle}$ ,  $n - t \leq j \leq n + t$   $(r_{n,n+t} = 1, r_{n,n-t} \neq 0, n \geq t)$ .

*Proof.* Since  $deg(\pi R_n) \leq n + t$ , we may write it as

$$\pi(x)R_n(x)=\sum_{j=0}^{n+t}s_{nj}R_j(x), \qquad n\geq 0.$$

Multiplying by  $R_k(x)$  and applying  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  on both sides, we have

$$s_{nk}\langle R_k, R_k \rangle_{\lambda,\mu} = \langle \sigma, R_n \pi R_k \rangle = \langle R_n, \pi R_k \rangle_{\lambda,\mu}$$

so that  $s_{nk} = 0$ ,  $0 \le k < n - t$ ,  $s_{n,n+1} = 1$ , and

$$s_{nk} = \frac{\langle R_n, \pi R_k \rangle_{\lambda,\mu}}{\langle R_k, R_k \rangle_{\lambda}, \mu} = \frac{\langle \sigma, R_n \pi R_k \rangle_{\lambda,\mu}}{\langle \sigma, P_k^2 \rangle} \frac{d_{k-1}}{d_k}, \ n-t \le k \le n+t$$

by (2.13) and (2.14). In Particular,

$$s_{n,n-t} = \frac{\langle R_n, \pi R_{n-t} \rangle_{\lambda,\mu}}{\langle R_{n-t}, R_{n-t} \rangle_{\lambda,\mu}} = \frac{\langle R_n, R_n \rangle_{\lambda,\mu}}{\langle R_{n-t}, R_{n-t} \rangle_{\lambda,\mu}} \neq 0.$$

Hence, we have (i). For (ii), the proof is essentially the same as the one for (i).  $\Box$ 

Note that

$$\frac{s_{n-i,n-j}}{\langle R_{n-i}, R_{n-i} \rangle_{\lambda,\mu}} = \frac{s_{n-j,n-i}}{\langle R_{n-j}, R_{n-j} \rangle_{\lambda,\mu}}$$

and

$$\frac{r_{n-i,n-j}}{\langle \sigma, P_i^2 \rangle} = \frac{r_{n-j,n-i}}{\langle \sigma, P_i^2 \rangle}, \ 0 \leq i \leq n-t, \ i-t \leq j \leq i+t.$$

It is well known (cf. [4]) that if  $\sigma$  is positive-definite, then  $P_n(x)$ ,  $n \geq 1$ , has n real simple zeros.

COROLLARY 2.6. Assume  $\sigma$  is positive-definite and let  $[\xi, \eta]$  be the true interval of orthogonality of  $\sigma$ , that is, the smallest interval containing all zeros of  $P_n(x)$ ,  $n \geq 1$ , in  $(\xi, \eta)$ . If there exists a polynomial  $\pi(x)$  satisfying (2.12), then  $\pi(x)R_n(x)$  has at least n-t nodal zeros, that is, zeros of odd multiplicity, in  $(\xi, \eta)$  so that  $R_n(x)$  has at least n-t-k nodal zeros in  $(\xi, \eta)$ , where k is the number of zeros of  $\pi(x)$  which have odd multiplicity in  $(\xi, \eta)$ .

*Proof.* Let  $x_1 < x_2 < \cdots < x_\ell$  be the nodal zeros of  $\pi(x)R_n(x)$  in  $(\xi, \eta)$  and  $\phi(x) = \prod_{i=1}^{\ell} (x - x_i)$ . Then either  $\phi(x)\pi(x)R_n(x) \geq 0$  or  $\phi(x)\pi(x)R_n(x) \leq 0$  on  $[\xi, \eta]$  so that

$$\langle \sigma, \phi(x)\pi(x)R_n(x)\rangle \neq 0.$$

Now, by Theorem 2.5 (ii),

$$\langle \sigma, \phi(x)\pi(x)R_n(x) \rangle = \sum_{j=n-t}^{n+t} r_{nj} \langle \sigma, \phi(x)P_j(x) \rangle$$

so that  $deg(\phi) = \ell \ge n - t$ .

We now ask: When is the symmetric bilinear form  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  induced by a moment functional? That is, when is there a moment functional  $\tau$  such that

$$\langle f, g \rangle_{\lambda,\mu} = \langle \tau, fg \rangle, \ f \ \text{and} \ g \in \Pi \ ?$$

LEMMA 2.7. If both  $L[\cdot]$  and  $M[\cdot]$  are linear algebra homomorphisms, then

$$\langle f, g \rangle_{\lambda,\mu} = \langle \sigma, fg \rangle + \lambda \langle \delta(x-a), L[fg] \rangle + \mu \langle \delta(x-b), M[fg] \rangle = \langle \tau, fg \rangle$$
  
where  $\tau$  is a moment functional defined by

$$(2.15) \quad \langle \tau, f \rangle = \langle \sigma, f \rangle + \lambda \langle \delta(x-a), L[f] \rangle + \mu \langle \delta(x-b), M[f] \rangle, \ f \in \Pi.$$

If  $L[\cdot]:\Pi\to\Pi$  is any linear algebra homomorphism, then for any  $f(x)=\sum_{k=0}^n a_k x^k$  in  $\Pi$ 

$$L[f] = \sum_{k=0}^{n} a_k L[x^k] = a_0 L[1] + \sum_{k=1}^{n} a_k L[x]^k$$

so that  $L[\cdot]$  is completely determined by L[1] and L[x]. Moreover, since L[x] = L[x]L[1], either L[x] = 0 or L[1] = 1.

If L[x] = 0, then  $L[f] = a_0 L[1] = f(0) L[1]$  so that L[xf(x)] = 0,  $f \in \Pi$ . If L[1] = 1, then  $L[f] = a_0 + \sum_{k=1}^n a_k L[x]^k = \sum_{k=0}^n a_k L[x]^k = f(L[x])$  so that L[(x-a)f(x)] = 0,  $f \in \Pi$ .

Hence, if both  $L[\cdot]$  and  $M[\cdot]$  are linear algebra homomorphisms so that  $\langle f, g \rangle_{\lambda,\mu} = \langle \tau, fg \rangle$ , then there exists a polynomial  $\pi(x)$  of degree t,  $1 \le t \le 2$ , such that (2.12) holds. To be precise, we have

(2.16) 
$$\pi(x) = \begin{cases} x, & \text{if } L[x] = M[x] = 0 \\ x(x-b), & \text{if } L[x] = 0 \text{ and } M[1] = 1 \\ (x-a)x, & \text{if } L[1] = 1 \text{ and } M[x] = 0 \\ (x-a)(x-b), & \text{if } L[1] = M[1] = 1. \end{cases}$$

THEOREM 2.8. Assume that both  $L[\cdot]$  and  $M[\cdot]$  are linear algebra homomorphisms so that  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  is induced by a moment functional  $\tau$  in (2.15). Let

$$P_{n+1}(x) = (x - b_n)P_n(x) - c_n P_{n-1}(x), \ n \ge 0,$$

where  $b_n$  and  $c_n$  are real numbers and  $c_n \neq 0$  for  $n \geq 1$ , be the three term recurrence relation for MOPS  $\{P_n(x)\}_{n=0}^{\infty}$  relative to  $\sigma$ . Then the MOPS  $\{R_n(x)\}_{n=0}^{\infty}$  relative to  $\tau$  satisfy a three term recurrence relation

$$(2.17) R_{n+1}(x) = (x - \beta_n)R_n(x) - \gamma_n R_{n-1}(x), \ n \ge 0,$$

where

$$\beta_n = b_{n+t} + r_{n,n+t-1} - r_{n+1,n+t}, \ n \ge 0;$$

$$\gamma_n = \frac{d_{n-2}d_n}{d_{n-1}^2}, \ n \ge 1.$$

*Proof.* We have (2.14):  $\pi(x)R_n(x) = \sum_{j=n-t}^{n+t} r_{nj}P_j(x)$ ,  $n \geq 0$ , where  $r_{nj} = 0$  for j < 0 and  $\pi(x)$  is the one in (2.16). Multiplying (2.17) by  $\pi(x)$  and applying (2.14), we obtain

(2.18)

$$\sum_{j=n+1-t}^{n+1+t} r_{n+1,j} P_j(x) = (x-\beta_n) \sum_{j=n-t}^{n+t} r_{nj} P_j(x) - \gamma_n \sum_{j=n-1-t}^{n-1+t} r_{n-1,j} P_j(x).$$

Multiplying (2.18) by  $P_{n+t}(x)$  and applying  $\sigma$ , we have

$$r_{n+1,n+t}\langle \sigma, P_{n+t}^2 \rangle = r_{n,n+t}\langle \sigma, x P_{n+t}^2 \rangle - \beta_n r_{n,n+t}\langle \sigma, P_{n+t}^2 \rangle + r_{n,n+t-1}\langle \sigma, x P_{n+t-1} P_{n+t} \rangle,$$

which gives

$$r_{n+1,,n+t} = rac{\langle \sigma, x P_{n+t}^2 
angle}{\langle \sigma, P_{n+t}^2 
angle} - eta_n + r_{n,n+t-1} = b_{n+t} - eta_n + r_{n,n+t-1}, \ n \geq 0$$

since  $b_n = \frac{\langle \sigma, x P_n^2 \rangle}{\langle \sigma, P_n^2 \rangle}$  and  $\langle \sigma, x P_n P_{n+1} \rangle = \langle \sigma, P_{n+1}^2 \rangle$ . On the other hand, we have by (2.7)

$$\gamma_n = \frac{\langle \tau, R_n^2 \rangle}{\langle \tau, R_{n-1}^2 \rangle} = \frac{d_n}{d_{n-1}} \langle \sigma, P_n^2 \rangle \frac{d_{n-2}}{d_{n-1}} \frac{1}{\langle \sigma, P_{n-1}^2 \rangle} = \frac{d_{n-2} d_n}{d_{n-1}^2} c_n, \ n \ge 1.$$

Theorem 2.8 was proved in [14, Theorem 4.5] when  $L[\cdot] = M[\cdot] = Id$ .

THEOREM 2.9. Assume that both  $L[\cdot]$  and  $M[\cdot]$  are linear algebra homomorphisms so that  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$  is induced by a moment functional  $\tau$  in (2.15). If  $\sigma$  is semiclassical satisfying  $(\alpha \sigma)' = \beta \sigma$ , where  $\alpha(x)$  and  $\beta(x)$  are polynomials with  $\deg(\beta) \geq 1$ , then  $\tau$  is also semiclassical and satisfies

$$(\pi\alpha\tau)' = (\pi'\alpha + \pi\beta)\sigma,$$

where  $\pi(x)$  is the one in (2.16).

*Proof.* We have for any  $f \in \Pi$ 

$$\begin{array}{l} \langle (\pi\alpha\tau)',f\rangle = -\langle \pi\alpha\tau,f'\rangle \\ = -\langle \sigma,\alpha f'\rangle - \lambda\langle \delta(x-a),L[\pi\alpha f']\rangle - \mu\langle \delta(x-b),M[\pi\alpha f']\rangle \\ = \langle (\pi\alpha\sigma)',f\rangle = \langle (\pi'\alpha+\pi\beta)\sigma,f\rangle \end{array}$$

so that 
$$(\pi \alpha \tau)' = (\pi' \alpha + \pi \beta) \sigma$$
.

In case  $L[\cdot] = M[\cdot] = Id$ , the class number of  $\tau$  is computed in [14, Section 5].

#### 3. Examples

Almost all the previously known examples are concerned with the symmetric bilinear form  $\langle \cdot, \cdot \rangle_{\lambda,\mu}$ , where linear operators  $L[\cdot]$  and  $M[\cdot]$  are of the same kind, e.g.,  $L[\cdot] = M[\cdot] = Id$  or  $L[\cdot] = D^r$ ,  $M[\cdot] = D^s$  or  $L[\cdot] = M[\cdot] = \Delta$ . Here, we give some interesting non-standard examples.

EXAMPLE 3.1. Consider a symmetric bilinear form defined by

$$\langle f, g \rangle_{\lambda} = \langle \sigma, fg \rangle + \lambda L[f](a)L[g](a),$$

where  $L[f](x) = f(x^2)$ . Then  $L[\pi\phi](a) = 0$ ,  $\phi \in \Pi$ , where  $\pi(x) = x - a^2$ . Let  $\{P_n(x)\}_{n=0}^{\infty}$  and  $\{R_n(x)\}_{n=0}^{\infty}$  be the MOPS's relative to  $\sigma$  and  $\langle \cdot, \cdot \rangle_{\lambda}$ , respectively. Then by Corollary 2.4, we obtain

$$d_n = 1 + \lambda \sum_{j=0}^n \frac{(L[P_j](a))^2}{\langle \sigma, P_j^2 \rangle} = 1 + \lambda \sum_{j=0}^n \frac{(P_j(a))^2}{\langle \sigma, P_j^2 \rangle}.$$

Thus if  $\lambda \neq -(\sum_{j=0}^n \frac{(P_j(a))^2}{\langle \sigma, P_j^2 \rangle})^{-1}$ , then  $\langle \cdot, \cdot \rangle_{\lambda}$  is quasi-definite, and

$$R_n(x) = P_n(x) - \lambda \frac{P_n(a^2)}{d_{n-1}} \sum_{j=0}^{n-1} \frac{P_j(a^2)P_j(x)}{\langle \sigma, P_j^2(x) \rangle}.$$

If moreover,  $\sigma$  is positive-definite, then  $R_n(x)$  has at least n-2 nodal zeros.

Now, consider another bilinear form defined by

$$\langle f, g \rangle_{\lambda,\mu} = \langle \sigma, fg \rangle + \lambda L[f](a)L[g](a) + \mu L[f](b)L[g](b),$$

where  $L[\cdot]$  is the same as above. Assume that  $\sigma$  is positive-definite. If  $a^2=b^2$ , then  $\langle \pi f,g\rangle_{\lambda,\mu}=\langle f,\pi g\rangle_{\lambda,\mu},\ f$  and  $g\in\Pi$ , for  $\pi(x)=x-a^2$  and  $R_n(x)$  has at least n-2 nodal zeros. If  $a^2\neq b^2$ , then  $\langle \pi f,g\rangle_{\lambda,\mu}=\langle f,\pi g\rangle_{\lambda,\mu},\ f$  and  $g\in\Pi$ , for  $\pi(x)=(x-a^2)(x-b^2)$  and  $R_n(x)$  has at least n-4 nodal zeros.

EXAMPLE 3.2. Let  $\{P_n(x)\}_{n=0}^{\infty}$  be a Bochner-Krall OPS relative to  $\sigma$  satisfying

$$L_N[P_n](x) = \sum_{i=0}^N \ell_i(x) P_n^{(i)}(x) = \lambda_n P_n(x), \,\, n \geq 0,$$

where  $\ell_i(x) = \sum_{j=0}^i \ell_{ij} x^j$  is a polynomial of degree  $\leq i$ ,  $\ell_N(x) \neq 0$ , and

$$\lambda_n = \ell_{11}n + \ell_{22}n(n-1) + \cdots + \ell_{NN}n(n-1) \cdots (n-N+1)$$

is the eigenvalue parameter. Note here that N must be an even integer (cf. [12, 13]). We now consider

(3.1) 
$$\langle f, g \rangle_{\lambda} = \langle \sigma, fg \rangle + \lambda L_N[f](a) L_N[g](a), f \text{ and } g \in \Pi.$$

Then

$$\langle \pi f, g \rangle_{\lambda} = \langle \sigma, \pi f g \rangle = \langle f, \pi g \rangle_{\lambda}, \ f \text{ and } g \in \Pi$$

for  $\pi(x) = (x - a)^{N+1}$  and

$$d_n=1+\lambda\sum_{j=0}^nrac{(L_N[P_j](a))^2}{\langle\sigma,P_j^2
angle}=1+\lambda\sum_{j=0}^nrac{\lambda_j^2P_j^2(a)}{\langle\sigma,P_j^2
angle},\,\,n\geq 0.$$

Hence, if  $\lambda \neq -(\sum_{j=0}^n \frac{\lambda_j^2 P_j^2(a)}{\langle \sigma, P_j^2 \rangle})^{-1}$ ,  $n \geq 0$ , then  $\langle \cdot, \cdot \rangle_{\lambda}$  is quasi-definite and the corresponding MOPS  $\{R_n(x)\}_{n=0}^{\infty}$  is given by

$$R_n(x) = P_n(x) - \frac{\lambda \lambda_n P_n(a)}{d_{n-1}} \sum_{j=0}^{n-1} \frac{\lambda_j P_j(a)}{\langle \sigma, P_j^2 \rangle} P_j(x), \ n \ge 0.$$

If moreover,  $\sigma$  is positive-definite, then  $R_n(x)$  has at least n-2N-2 real nodal zeros. In particular, let's take a=0 and

$$\langle \sigma, f \rangle = \int_0^\infty x^{\alpha} e^{-x} f(x) dx \ (\alpha > -1)$$

so that  $\{P_n(x)\}_{n=0}^{\infty} = \{L_n^{(\alpha)}(x)\}_{n=0}^{\infty}$  is the Laguerre polynomials:

$$L_n^{(\alpha)}(x) = (-a)^n n! \sum_{j=0}^n \binom{n+\alpha}{n-j} \frac{(-x)^j}{j!}, \ n \ge 0$$

satisfying

$$xL_n^{(\alpha)}(x)'' + (\alpha + 1 - x)L_n^{(\alpha)}(x)' = -nL_n^{(\alpha)}(x), \ n \ge 0.$$

In this case, the symmetric bilinear form (3.1) becomes

(3.2) 
$$\langle f, g \rangle_{\lambda} = \langle \sigma, fg \rangle + \lambda (\alpha + 1)^2 f'(0) g'(0), \ f \text{ and } g \in \Pi.$$

Since  $L_n^{(\alpha)}(0) = (-1)^n n! \binom{n+\alpha}{n}$  and  $\langle \sigma, (L_n^{(\alpha)}(x))^2 \rangle = (n!)^2$ ,  $d_n = 1 + \lambda \sum_{j=0}^n j^2 \binom{j+\alpha}{j}$ ,  $n \geq 0$ . Hence, if  $\lambda \neq -(\sum_{j=0}^n j^2 \binom{j+\alpha}{j}^2)^{-1}$ ,  $n \geq 0$ , then the MOPS  $\{R_n(x)\}_{n=0}^{\infty}$  relative to  $\langle \cdot, \cdot \rangle_{\lambda}$  in (3.2) is given by

$$R_n(x) = L_n^{(\alpha)}(x) + (-1)^n \lambda \frac{nn! \binom{n+\alpha}{n}}{d_{n-1}} \sum_{j=0}^{n-1} \frac{(-1)^{j+1} j \binom{j+\alpha}{j}}{j!} L_j^{(\alpha)}(x), \ n \ge 0.$$

Moreover,  $R_n(x)$  has at least n-2 nodal zeros in  $(0,\infty)$  since

$$\langle x^2f,g\rangle_{\lambda}=\langle \sigma,x^2fg\rangle=\langle f,x^2g\rangle_{\lambda},\ f\ {
m and}\ g\in\Pi.$$

EXAMPLE 3.3. Let  $\sigma$  be a positive-definite moment functional defined by

(3.3) 
$$\langle \sigma, f(x) \rangle = \sum_{x=0}^{\infty} \frac{e^{-\mu} \mu^x}{x!} f(x), \ f(x) \in \Pi \ (\mu > 0).$$

Then the corresponding MOPS is the Charlier polynomials  $\{C_n^{(\mu)}(x)\}_{n=0}^{\infty}$  ([3, 16]):

$$C_n^{(\mu)}(x) = \sum_{i=0}^n \frac{n!}{(n-j)!} (-\mu)^{n-j} \binom{x}{j}, \ n \ge 0$$

satisfying

$$\langle \sigma, (C_n^{(\mu)}(x))^2 \rangle = \mu^n n!, \ n \ge 0$$

and

$$x\Delta\nabla C_n^{(\mu)}(x) + (\mu - x)\Delta C_n^{(\mu)}(x) = -nC_n^{(\mu)}(x), \ n \ge 0,$$

where  $\Delta f(x) = f(x+1) - f(x)$  and  $\nabla f(x) = f(x) - f(x-1)$  are forward and backward difference operators.

We first consider a symmetric bilinear form defined by

$$(3.4) \langle f, g \rangle_{\lambda} = \langle \sigma, fg \rangle + \lambda \Delta^{r} f(0) \Delta^{r} g(0),$$

where  $r \geq 1$  is an integer. From the facts that  $C_n^{(\mu)}(0) = (-\mu)^n$  and

(3.5) 
$$\Delta C_n^{(\mu)}(x) = nC_{n-1}^{(\mu)}(x), \quad n \ge 0,$$

we have

$$d_n = \begin{cases} 1, & \text{if } 0 \le n < r \\ 1 + \lambda \sum_{j=r}^n \frac{j! \mu^{j-2r}}{((j-r)!)^2}, & \text{if } n \ge r. \end{cases}$$

Hence, if  $\lambda \neq -(\sum_{j=r}^n \frac{j!\mu^{j-2r}}{((j-r)!)^2})^{-1}$ ,  $n \geq r$ , then  $\langle \cdot, \cdot \rangle_{\lambda}$  is quasi-definite and the corresponding MOPS  $\{R_n^{(\mu,r)}(x)\}_{n=0}^{\infty}$  is given by

$$R_n^{(\mu,r)}(x) = \begin{cases} C_n^{(\mu)}(x), & \text{if } 0 \le n < r \\ C_n^{(\mu)}(x) - \frac{\lambda r! \binom{n}{r} \mu^{n-r}}{d_{n-1}} \sum_{j=r}^{n-1} \frac{(-1)^{j-r}}{\mu^r (j-r)!} C_j^{(\mu)}(x), & \text{if } n \ge r. \end{cases}$$

Moreover, since  $\langle \pi f, g \rangle_{\lambda} = \langle \sigma, \pi f g \rangle = \langle f, \pi g \rangle_{\lambda}$ , where  $\pi(x) = x(x-1) \cdots (x-r)$ 

 $R_n^{(\mu,r)}(x)$  has at least n-2r-1 nodal zeros in  $(0,\infty)$ . OPS's  $\{R_n^{(\mu,0)}\}_{n=0}^\infty$  and  $\{R_n^{(\mu,1)}\}_{n=0}^\infty$  for  $\lambda>0$  (note that in these cases,  $\langle\cdot,\cdot\rangle_\lambda$  in (3.4) is always positive-definite) were already considered by Bavinck and Koekoek [3] and Bavinck [1], respectively. They express  $R_n^{(\mu,r)}(x)$  for r=0,1 in terms of  $C_n^{(\mu)}(x)$ ,  $C_{n-1}^{(\mu)}(x-1)$ , and  $C_{n-2}^{(\mu)}(x-2)$  and find infinite order difference equations having them as eigenfunctions.

Now, consider another symmetric bilinear form defined by

(3.6) 
$$\langle f, g \rangle_{\lambda} = \langle \sigma, fg \rangle + \lambda L[f](0)L[g](0), f \text{ and } g \in \Pi$$

where  $\sigma$  is the Charlier moment functional as in (3.3) and  $L[\cdot]$  is a hypergeometric type difference operator given by

$$L[y](x) = \mu \Delta^2 y(x) - (x+1-\mu)\Delta y(x).$$

Then using (3.5) and the three term recurrence relation for  $\{C_n^{(\mu)}(x)\}_{n=0}^\infty$ 

$$C_{n+1}^{(\mu)}(x) = [x - (\mu + n)]C_n^{(\mu)}(x) - \mu n C_{n-1}^{(\mu)}(x), \ n \ge 0$$

we have

$$L[C_n^{(\mu)}](x) = -n\Delta C_n^{(\mu)}(x) - nC_n^{(\mu)}(x), \ n \ge 0$$

so that

$$d_n = \begin{cases} 1, & \text{if } n = 0\\ 1 + \lambda \sum_{j=1}^n \frac{j\mu^{j-2}(j-\mu)}{(j-1)!}, & \text{if } n \ge 1. \end{cases}$$

Hence, if  $\lambda \neq (\sum_{j=1}^n \frac{j\mu^{j-2}(j-\mu)}{(j-1)!})^{-1}$ ,  $n \geq 1$ , then  $\langle \cdot, \cdot \rangle_{\lambda}$  in (3.6) is quasi-definite and the corresponding MOPS  $\{R_n(x)\}_{n=0}^{\infty}$  is given by

$$R_n(x) = \begin{cases} C_0^{(\mu)}(x) = 1, & \text{if } n = 0 \\ C_n^{(\mu)}(x) + \frac{\lambda n(n+\mu)(-\mu)^{n-1}}{d_{n-1}} \sum_{j=1}^{n-1} \frac{(-1)^j (j-\mu)}{\mu(j-1)!} C_j^{(\mu)}(x), & \text{if } n \ge 1. \end{cases}$$

Moreover, since  $\langle \pi f, g \rangle_{\lambda} = \langle \sigma, \pi f g \rangle = \langle f, \pi g \rangle_{\lambda}$ , where

$$\pi(x) = x(x-1)(x-2),$$

 $R_n(x)$  has at least n-5 nodal zeros in  $(0,\infty)$ .

# 4. Operator Equations of Infinite Order

In this section, we consider a symmetric bilinear form

$$\langle f, g \rangle_{\lambda} = \langle \sigma, fg \rangle + \lambda L^{r}[f](a)L^{r}[g](a),$$

where  $L[\cdot]$  is a linear operator with  $\deg(L[f]) \leq \deg(f) - 1$ ,  $\lambda$  and a are real numbers and r is a positive integer. We assume that the MOPS  $\{P_n(x)\}_{n=0}^{\infty}$  are eigenfunctions of another linear operator  $M[\cdot]$ , that is,

$$M[P_n](x) = \lambda_n P_n(x), \ n \ge 0.$$

By setting for p and  $q = 0, 1, 2, \cdots$ 

$$K_n^{(p,q)}(x,y) = \sum_{j=0}^n rac{L^p[P_j](x)}{\langle \sigma, P_j^2 
angle},$$

we have from Corollary 2.4 that  $\langle \cdot, \cdot \rangle_{\lambda}$  is quasi-definite if and only if

$$(4.2) 1 + \lambda K_n^{(r,r)}(a,a) \neq 0, \quad n \geq 0.$$

We always assume that the condition (4.2) holds so that  $\langle \cdot, \cdot \rangle_{\lambda}$  is quasidefinite and let  $\{R_n(x)\}_{n=0}^{\infty}$  be the MOPS relative to  $\langle \cdot, \cdot \rangle_{\lambda}$ . Then

$$(4.3) R_n(x) = P_n(x) - \frac{\lambda L^r[P_n](a)}{1 + \lambda K_n^{(r,r)}(a,a)} K_{n-1}^{(r,r)}(a,x), \ n \ge 0.$$

In the following, all the summations are understood to be equal to 0 if the upper limit of the sum is less than the lower limit of the sum.

THEOREM 4.1. The MOPS  $\{R_n(x)\}_{n=0}^{\infty}$  relative to  $\langle \cdot, \cdot \rangle_{\lambda}$  in (4.1) satisfies the following operator equations

$$(4.4) \quad \lambda \left\{ \sum_{i=1}^{\infty} \alpha_i(x) L^i[y](x) + \alpha_0(x,n) y(x) \right\} + M[y](x) - \lambda_n y(x) = 0,$$

where

$$(4.5) \ \alpha_{i}(x) = \frac{-1}{L^{i}[P_{i}](x)} \left\{ \alpha_{0}(x,i)P_{i}(x) + \sum_{j=1}^{i-1} \alpha_{j}(x)L^{j}[P_{i}](x) + L^{r}[P_{i}](a) \sum_{j=r}^{i-1} \frac{(\lambda_{i} - \lambda_{j})L^{r}[P_{j}](a)P_{j}(x)}{\langle \sigma, P_{j}^{2} \rangle} \right\}, \quad i \geq 1$$

and

$$(4.6) \quad \alpha_0(x,n) = \begin{cases} 0, & n = 0 \\ \text{arbitrary constant}, & 1 \le n \le r \\ \alpha_0(x,n-1) - K_{n-1}^{(r,r)}(a,a)(\lambda_n - \lambda_{n-1}) \\ = \alpha_0(x,r) - \sum_{i=r}^{n-1} K_i^{(r,r)}(a,a)(\lambda_{i+1} - \lambda_i), & n \ge r + 1. \end{cases}$$

*Proof.* Note that  $\deg(\alpha_i) \leq i$  and  $\alpha_i(x)$  is independent of  $n, n \geq 1$ . Substituting  $\{1 + \lambda K_{n-1}^{(r,r)}(a,a)\}R_n(x)$  for y in (4.4) gives

$$\left\{1 + \lambda K_{n-1}^{(r,r)}(a,a)\right\} \times \lambda \sum_{i=1}^{\infty} \left\{\alpha_{i}(x)L^{i}[R_{n}](x) + M[R_{n}](x) - \mu_{n}R_{n}(x)\right\} \\
= \lambda \left\{\alpha_{0}(x,n)P_{n}(x) + \sum_{i=1}^{\infty} \alpha_{i}(x)L^{i}[P_{n}](x) + L^{r}[P_{n}](a)\right. \\
\left(4.7\right) \times \sum_{i=r}^{n-1} \frac{(\lambda_{n} - \lambda_{i})L^{r}[P_{i}](a)P_{i}(x)}{\langle \sigma, P_{i}^{2} \rangle}\right\} + \lambda^{2} \left\{\alpha_{0}(x,n)K_{n-1}^{(r,r)}(a,a)P_{n}(x) + K_{n-1}^{(r,r)}(a,a)\sum_{i=1}^{\infty} \alpha_{i}(x)L^{i}[P_{n}](x) - \alpha_{0}(x,n)L^{r}[P_{n}](a)K_{n-1}^{(r,0)}(a,x) - L^{r}[P_{n}](a)\sum_{i=1}^{\infty} \alpha_{i}(x)L^{i}[K_{n-1}^{(r,0)}(a,x)]\right\} = 0.$$

Since  $\lambda$  can be any real number satisfying  $1 + \lambda K_n^{(r,r)}(a,a) \neq 0$ ,  $n \geq 0$ , (4.7) is equivalent to

(4.8) 
$$\alpha_0(x,n)P_n(x) + \sum_{i=1}^{\infty} \alpha_i(x)L^i[P_n](x) + L^r[P_n](a)\sum_{i=r}^{n-1} \frac{(\lambda_n - \lambda_i)L^r[P_i](a)P_i(x)}{\langle \sigma, P_i^2 \rangle} = 0$$

and

$$(4.9) K_{n-1}^{(r,r)}(a,a) \left\{ \alpha_0(x,n) P_n(x) + \sum_{i=1}^{\infty} \alpha_i(x) L^i[P_n](x) \right\}$$

$$-L^r[P_n](a) \left\{ \alpha_0(x,n) K_{n-1}^{(r,0)}(a,x) + \sum_{i=1}^{\infty} \alpha_i(x) K_{n-1}^{(r,i)}(a,x) \right\} = 0$$

for all  $x \in \mathbb{R}$  and  $n \geq 0$ . Thus to prove this theorem, it is sufficient to show that  $\{\alpha_i(x)\}_{i=0}^{\infty}$  defined by (4.5) and (4.6) satisfy (4.8) and (4.9). Multiplying (4.8) by  $K_{n-1}^{(r,r)}(a,a)$  and then subtracting (4.9) gives

$$L^{r}[P_{n}](a) \left\{ \alpha_{0}(x,n) K_{n-1}^{(r,0)}(a,x) + \sum_{i=1}^{\infty} \alpha_{i}(x) K_{n-1}^{(r,i)}(a,x) + K_{n-1}^{(r,r)}(a,a) \sum_{i=r}^{n-1} \frac{(\lambda_{n} - \lambda_{i}) L^{r}[P_{i}](a) P_{i}(x)}{\langle \sigma, P_{i}^{2} \rangle} \right\} = 0.$$

Hence it is sufficient to show that  $\{\alpha_i(x)\}_{i=0}^{\infty}$  satisfy (4.8) and

$$lpha_0(x,n)K_{n-1}^{(r,0)}(a,x) + \sum_{i=1}^{\infty} lpha_i(x)K_{n-1}^{(r,i)}(a,x) \ + K_{n-1}^{(r,r)}(a,a)\sum_{i=r}^{n-1} rac{(\lambda_n - \lambda_i)L^r P_i(a)P_i(x)}{\langle \sigma, P_i^2 
angle} = 0.$$

In fact, (4.8) is equivalent to (4.5) and (4.10) holds trivially for  $0 \le n \le r$ . Assume that (4.10) holds up to n = m. Note that

(4.10) 
$$K_m^{(p,q)}(x,y) = K_{m-1}^{(p,q)}(x,y) + \frac{L^p[P_m](x)L^q[P_m](y)}{\langle \sigma, P_m^2 \rangle}.$$

#### K. H. Kwon, D. W. Lee, and J. H. Lee

For n = m + 1, the left-hand side of (4.10) becomes by (4.6) and (4.10)

$$\begin{split} &\alpha_0(x,m+1)K_m^{(r,0)}(a,x) + \sum_{i=1}^\infty \alpha_i(x)K_m^{(r,i)}(a,x) \\ &+ K_m^{(r,r)}(a,a) \sum_{i=r}^m \frac{(\lambda_{m+1} - \lambda_i)L^r[P_i](a)P_i(x)}{\langle \sigma, P_i^2 \rangle} \\ &= \left\{ \alpha_0(x,m) - K_m^{(r,r)}(a,a)(\lambda_{m+1} - \lambda_m) \right\} K_m^{(r,0)}(a,x) \\ &+ \sum_{i=1}^\infty \alpha_i(x)K_m^{(r,i)}(a,x) + K_m^{(r,r)}(a,a) \\ &\cdot \left\{ \sum_{i=r}^m \frac{(\lambda_{m+1} - \lambda_m)L^r[P_i](a)P_i(x)}{\langle \sigma, P_i^2 \rangle} + \sum_{i=r}^{m-1} \frac{(\lambda_m - \lambda_i)L^r[P_i](a)P_i(x)}{\langle \sigma, P_i^2 \rangle} \right\} \\ &= \alpha_0(x,m)K_m^{(r,0)}(a,x) + \sum_{i=1}^\infty \alpha_i(x)K_m^{(r,i)}(a,x) \\ &+ K_m^{(r,r)}(a,a) \sum_{i=r}^{m-1} \frac{(\lambda_m - \lambda_i)L^r[P_i](a)P_i(x)}{\langle \sigma, P_i^2 \rangle} \\ &= \alpha_0(x,m)K_{m-1}^{(r,0)}(a,x) + \sum_{i=1}^\infty \alpha_i(x)K_{m-1}^{(r,i)}(a,x) \\ &+ K_{m-1}^{(r,r)}(a,a) \sum_{i=r}^{m-1} \frac{(\lambda_m - \lambda_i)L^r[P_i](a)P_i(x)}{\langle \sigma, P_i^2 \rangle} + \frac{L^r[P_m](a)}{\langle \sigma, P_m^2 \rangle} \\ &\cdot \left\{ \alpha_0(x,m)P_m(x) + \sum_{i=1}^\infty \alpha_i(x)L^i[P_m](x) \right. \\ &+ L^r[P_m](a) \sum_{i=r}^{m-1} \frac{(\lambda_m - \lambda_i)L^r[P_i](a)P_i(x)}{\langle \sigma, P_i^2 \rangle} \right\} \end{split}$$

which is equal to 0 by the induction hypothesis for n = m and (4.10).

EXAMPLE 4.1. Consider a bilinear form  $\langle \cdot, \cdot \rangle_{\lambda}$  as in (3.4). Then,

$$K_n^{(r,r)}(0.0) = \sum_{j=r}^n \frac{j! \, \mu^{j-2r}}{((j-r)!)^2}.$$

Since  $\{C_n^{(\mu)}(x)\}_{n=0}^{\infty}$  satisfy a hypergeometric type difference equation

$$x\Delta\nabla y(x) + (\mu - x)\Delta y(x) = -ny(x),$$

 $\{R_n^{(\mu,r)}(x)\}_{n=0}^{\infty}$  satisfy

$$\lambda iggl\{ \sum_{i=1}^{\infty} lpha_i(x) \Delta^i y(x) + lpha_0(x,n) y(x) iggr\} \ + x \Delta 
abla y(x) + (\mu - x) \Delta y(x) + n y(x) = 0,$$

where

$$\alpha_{i}(x) = \frac{-1}{i!} \left\{ \alpha_{0}(x, i) C_{i}^{(\mu)}(x) + \sum_{j=1}^{i-1} \alpha_{j}(x) \Delta^{j} C_{i}^{(\mu)}(x) + \frac{i!(-\mu)^{i-r}}{(i-r)!} \sum_{j=r}^{i-1} \frac{(j-i)C_{j}^{(\mu)}(x)}{\mu^{j}(j-r)!} \right\}$$

$$= \frac{-1}{i!} \left\{ \alpha_{0}(x, i) C_{i}^{(\mu)}(x) + \sum_{j=1}^{i-1} \frac{i!}{(i-j)!} \alpha_{i}(x) C_{i-j}^{(\mu)}(x) + \frac{i!(-\mu)^{i-r}}{(i-r)!} \sum_{j=r}^{i-1} \frac{(j-i)C_{j}^{(\mu)}(x)}{\mu^{j}(j-r)!} \right\}, \quad i \geq 1$$

and

$$lpha_0(x,n) = \left\{egin{array}{ll} 0, & n=0 \ ext{arbitrary}, & 1 \leq n \leq r \ lpha_0(x,r) + \sum_{i=r}^{n-1} \sum_{j=r}^{i-1} rac{j!\, \mu^{j-2r}}{(j-r)!\, (j-r)!}, & n \geq r+1. \end{array}
ight.$$

K. H. Kwon, D. W. Lee, and J. H. Lee

As a special case, if we choose r = 0, then

$$\begin{array}{lcl} \alpha_i(x) & = & \displaystyle \frac{-1}{i!} \bigg\{ \alpha_0(x,i) C_i^{(\mu)}(x) + \sum_{j=1}^{i-1} \frac{i!}{(i-j)!} \alpha_i(x) C_{i-j}^{(\mu)}(x) \\ & & + \frac{i! (-\mu)^i}{i!} \sum_{j=0}^{i-1} \frac{(j-i) C_j^{(\mu)}(x)}{\mu^j j!} \bigg\}. \end{array}$$

Bavinck and Koekoek [3] have found a difference equation of infinite order for  $\{R_n^{(\mu,0)}(x)\}_{n=0}^{\infty}$  (see also [1] for the case r=1).

EXAMPLE 4.2. Consider a bilinear form

$$\langle f, g \rangle_{\lambda} = \langle \sigma, fg \rangle + \lambda f^{(r)}(0)g^{(r)}(0),$$

where  $\sigma$  is a positive-definite moment functional defined by

$$\langle \sigma, f \rangle = \int_0^\infty f(x) x^{\alpha} e^{-x} dx, \ (\alpha > -1)$$

so that  $\{P_n(x)\}_{n=0}^\infty=\{L_n^{(\alpha)}(x)\}_{n=0}^\infty$  is the monic Laguerre polynomials (see Example 3.2). Then,

$$K_n^{(r,r)}(0,0) = \sum_{j=0}^n \frac{(L_j^{(\alpha)})^{(r)}(0)(L_j^{(\alpha)})^{(r)}(0)}{\langle \sigma, (L_j^{(\alpha)}(x))^2} = \sum_{j=0}^{n-r} \binom{j+r+\alpha}{r+\alpha}^2.$$

Since  $\{L_n^{(\alpha)}(x)\}_{n=0}^{\infty}$  satisfies a second order differential equation

$$xy''(x) + (\alpha + 1 - x)y'(x) = -ny(x), \ n \ge 0,$$

the corresponding MOPS  $\{R_n(x)\}_{n=0}^{\infty}$  relative to  $\langle\cdot,\cdot\rangle_{\lambda}$  satisfy

$$\lambda \left\{ \sum_{i=1}^{\infty} \alpha_i(x) y^{(i)}(x) + \alpha_0(x, n) y(x) \right\}$$
$$+ xy''(x) + (\alpha + 1 - x)y'(x) + ny(x) = 0,$$

where

$$\alpha_{i}(x) = \frac{-1}{i!} \left\{ \alpha_{0}(x, i) L_{i}^{(\alpha)}(x) + \sum_{j=1}^{i-1} \alpha_{j}(x) (L_{i}^{(\alpha)})^{(j)}(x) + (L_{i}^{(\alpha)})^{(r)}(0) \sum_{j=r}^{i-1} \frac{(j-i)(L_{j}^{(\alpha)})^{(r)}(0) L_{j}^{(\alpha)}(x)}{(j!)^{2}} \right\}$$

$$= \frac{-1}{i!} \left\{ \alpha_{0}(x, i) L_{i}^{(\alpha)}(x) + \sum_{j=1}^{i-1} \frac{i!}{(i-j)!} \alpha_{j}(x) L_{i-j}^{(\alpha)}(x) + i!(-1)^{i-r} {i+\alpha \choose r+\alpha} \sum_{j=r}^{i-1} \frac{(j-i)(-1)^{j-r} {j+\alpha \choose r+\alpha} L_{j}^{(\alpha)}(x)}{j!} \right\}$$

and

$$lpha_0(x,n) = \left\{egin{array}{ll} 0, & n=0 \ ext{arbitrary}, & 1 \leq n \leq r \ lpha_0(x,r) + \sum_{i=r}^{n-1} \sum_{j=0}^{i-r} inom{j+r+lpha}{r+lpha}^2, & n \geq r+1. \end{array}
ight.$$

As a special case, if we choose r = 0, then

$$\alpha_{i}(x) = \frac{-1}{i!} \left\{ \alpha_{0}(x, i) L_{i}^{(\alpha)}(x) + \sum_{j=1}^{i-1} \frac{i!}{(i-j)!} \alpha_{j}(x) L_{i-j}^{(\alpha)}(x) + i! (-1)^{i} {i+\alpha \choose \alpha} \sum_{j=0}^{i-1} \frac{(j-i)(-1)^{j} {j+\alpha \choose \alpha} L_{j}^{(\alpha)}(x)}{j!} \right\}.$$

J. Koekoek and R. Koekoek [9] have found a differential equation of infinite order when r=0.

ACKNOWLEDGEMENT. This work is partially supported by GARC and by Korea Ministry of Education (BSRI-1998-015-D00028).

# References

[1] H. Bavinck, A difference operator of infinite order with Sobolev-type Charlier polynomials as eigenfunctions, Indag. Mathem., N. S. 7 (1996), no. 3, 282-291.

#### K. H. Kwon, D. W. Lee, and J. H. Lee

- [2] \_\_\_\_\_, Linear perturbations of differential or difference operators with polynomials as eigenfunctions, J. Comp. Appl. Math. 78 (1997), 179-195.
- [3] H. Bavinck and R. Koekoek, On a difference equation for generalizations of Charlier polynomials, J. Approx. Th. 81 (1995), 195-206.
- [4] T. S. Chihara, Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
- [5] \_\_\_\_\_\_, Orthogonal polynomials and measures with end point masses, Rocky Mt.
   J. Math. 15 (1985) no. 3, 705-719.
- [6] N. Draïdi and P Maroni, Sur l'adjonction de deux masses de Dirac à une forme régulière quelconque, in: Polinomios Ortogonales y Sus Aplicaciones (A. Cachafeiro and E. Godoy, eds.), Univ. de Vigo, 1989, pp. 83-90.
- [7] I. H. Jung, K. H. Kwon and G. J. Yoon, Differential equations of infinite order for Sobolev-type orthogonal polynomials, J. Comp. Appl. Math. 78 (1997), 277-293.
- [8] D. H. Kim, K. H. Kwon, F. Marcellán, and S. B. Park, Sobolev-type orthogonal polynomials and their zeros, Rendi. di Matem. Serie VII, 17, 1997, pp. 423-444.
- [9] J. Koekoek and R. Koekoek, On a differential equation for Koornwinder's generalized Laguerre polynomials, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1045– 1054.
- [10] R. Koekoek, The search for differential equation for certain sets of orthogonal polynomials, J. Comp. Appl. Math. 49 (1993), 111-119.
- [11] T. H. Koornwinder, Orthogonal Polynomials with weight function  $(1-x)^{\alpha}(1+x)^{\beta}+M\delta(x-1)+N\delta(x+1)$ , Canad. Math. Bull. 27 (1984), no. 2, 205–214.
- [12] H. L. Krall, Certain differential equations for Tchebychev polynomials, Duke Math. J. 4 (1938), 705-719.
- [13] K. H. Kwon, D. W. Lee, and L. L. Littlejohn, Differential equations having orthogonal polynomial solutions, J. Comp. Appl. Math. 80 (1997), 1-16.
- [14] K. H. Kwon and S. B. Park, Two point masses perturbation of regular moment functionals, Indag. Mathem., N. S. 8 (1997) no. 1, 79-93.
- [15] F. Marcellán and P. Maroni, Sur l'adjonction d'une masse de Dirac à une forme régulière et semi-classique, Ann. Mat. Pura ed Appl. (IV), Vol CLXII, 1992, pp. 1-22.
- [16] A. K. Nikiforov, S. K. Suslov and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable, Springer Series in Comp. Physics, Springer-Verlag, New York, 1991.
- K. H. KWON AND J. H. LEE, DEPARTMENT OF MATHEMATICS, KAIST, TAEJEON 305-701, KOREA

E-mail: khkwon@jacobi.kaist.ac.kr

D. W. LEE, TGRC, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA *E-mail*: dwlee@gauss.kyungpook.ac.kr