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ORTHOGONAL POLYNOMIALS RELATIVE TO LINEAR
PERTURBATIONS OF QUASI-DEFINITE MOMENT
FUNCTIONALS

" K. H. Kwon, D. W. LEg, AND J. H. LEE

ABSTRACT. Consider a symmetric bilinear form defined on II xII by
{f,9)au = (0, f9) + AL[f](a) L[gl(a) + uM[f](6)M[g](b),

where ¢ is a quasi-definite moment functional, L and M are linear
operators on II, the space of all real polynomials and a, b, A, and p are
real constants. We find a necessary and sufficient condition for the
above bilinear form to be quasi-definite and study various properties
of corresponding orthogonal polynomials. This unifies many previous
works which treated cases when both L and M are differential or
difference operators. Finally, infinite order operator equations having
such orthogonal polynomials as eigenfunctions are given when p = 0.

1. Introduction

All polynomials in this work are assumed to be real polynomials in one
variable and we let I be the space of all real polynomials. We let deg(m)
be the degree of a polynomial 7(z) with the convention deg(0) = —1. By
a polynomial system (PS), we mean a sequence of polynomials { P,(z)}%,
with deg(P,) =n, n > 0.

Let L and M be any two linear operators defined on II. We now
consider a symmetric bilinear form on IT x II given by

(1.1)
(£, 90 = (o, fg) + AL[f](a) Lg](a) + pM[f](b) M|g](b), (f,g € II)
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where o is a moment functional (i.e., a linear functional on II) and A,
U, a, and b are real numbers. We say that the bilinear form (,-),, is
quasi-definite (respectively, positive-definite) if

(17 1>/\,u (la .’II))\,M e (1’ mn))\’#
An o (IBa :.l>/\,/_t (CL', :f’.>)\,p . <-’1?, z:n>)\,u ?é 0’
@™ Dou (@2 - (2"

(respectively, A, > 0) n > 0.

When (-, ), is quasi-definite (respectively, positive-definite), there is
a unique monic PS {R,,(z)}%, such that

(Rmy Rn>,\,p - Kn(smn, m and n Z 0,

. where K, is a non-zero (respectively, a positive) constant and vice versa.
In this case, we call {R,(z)}%°, a monic orthogonal polynomial system
(MOPS) relative to (-,-),, (or a MOPS relative to ¢ when A = p = 0).
When L = M = Id, the identity operator,

(f,@ru= {0+ Ao(x—a)+ pd(z —b), fg), fand g €1l

is just a point mass perturbation of o, which is already handled by many
authors ([5, 6, 11, 14, 15]). When L and M are differential or difference
operators, {R,(z)}%, is called a Sobolev-type orthogonal polynomials
(see [1, 7, 8] and references therein). Generalizing these examples, we
consider arbitrary linear operators L and M by which we perturb o.
We first find a necessary and sufficient condition for (-,-),, to be quasi-
definite (see Theorem 2.2), which extends results in [6, 8, 14], in which
L =M =1Idor pg =0. We then express {R,(z)}%, in terms of or-
thogonal polynomials { P,(xz)}%, relative to o and discuss their algebraic
properties such as long term recurrence relation, quasi-orthogonality, and
semi-classical character, including several non-standard examples. Fi-
nally, when p = 0 and {P,(z)}2, are eigenfunctions of a certain linear
operator on II, we show that {R,(z)}%°, must also be eigenfunctions of
a possibly infinite order operator equation.

This last result (see Theorem 4.1) explains many previous works ([1, 3,
7,9, 10]) in a unified manner. Bavinck [2] considered a similar problem
in a different viewpoint: perturb not the moment functional but the PS
{Pu(z)}22, (which need not be orthogonal) by another PS {Q,(z)}%,.
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2. Necessary and Sufficient Conditions

We always assume that o is quasi-definite and { P,(z)}2, is the MOPS
relative to 0. Let ()5, be the bilinear form as in (1.1). We set for p
and ¢=0,1,---

(2.1) K®(z,y) = Z”[E]((i)ggl’j](y)
(2.2) Cod(z,y) = ZD” [HJEQJI\.{%{E](y)
(2.3) JE(z,y) = ZM”[H]g’)ﬁ;[E](y),

where [P*! = L{[?] and MP*! = M[MP]. Then
KO9(z,y) = G40y, ) and JP9(z,y) = GP9(x,)

PROPOSITION 2.1. The kernels K,(f’Q)(x, Y), Gsf”q)(a:, y) and J,(Lp’q)(:c, )
as in (2.1) ~ (2.3) have reproducing properties, i.e.,

24) {0, K2z, y)¥(z)) = (0,G¢O(y,z)¢(z)) = LY)(y)
25) (0, J0(z,)¢(z)) = (0,GP(z,y)¥(z)) = M) (y)

for any polynomial y(z) of degree < n.
Proof. We set tp =3 t0CPi(z). Then

(0, K09, 1)) = (0, G591, ) (0)) = 3 2y e (o, P

:Z%@,gzm Zc: P(y) = L] (y)

by the orthogonality of {P,(z)}%, relative to 0. Hence we have (2.4).
(2.5) can be proved similarly. g

Now, we have:
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THEOREM 2.2. The bilinear form (-,-),, in (1.1) is quasi-definite if
and only if

1+ 2K (@,0)  uGYY(a, b)
= ’ ’ 0, n>0.
A0 b) 14+ pIMppy | 7O ™
In this case, MOPS {R,(z)}>, is given by
(2.6)
LP)(@)  pGlY(a,b) | a0
= P,(z) - 2 n-1 G, a,x
O =B a iR 14 w0,n] S O
1

n 1+,\K,1§_’11)(a, a) L[P,)(a)

GO(z,b), n>0,
=) acn  Mpe)| S 2

where d_; = 1.
Moreover, we have

d

(2.7) <mﬁmf4mamsgg@ﬁ»

Proof. Assume that the bilinear form (-,-),, in (1.1) is quasi-definite
and let {R,(z)}32, be the MOPS relative to (-, ), ,. Then we may write

R,.(z) = P,(z) + ni CyPi(z), n>0.
=0

By the orthogonality of { R,(z)}2, and {P,(z)}%,, we have for 0 < j <
n-1
(0, PiRn) _ —AL[Rn|(a)L[Pj](a) — pM[R.)(b)M[P}](b)

G T (o, )

and so
(28)  Ra(2) = Pa(z) = AL[RA)(a)G\2Y (a, 3) — pMIR)(0)G (2, ).
Acting L and M to (2.8) and evaluating at z = a and z = b respectively,
we obtain
(2.9)
1+ 2K, (a,a)  pG)(a,b) ( L(R,)(a) ) _ ( L[P:)(a) )
AGR(a,b) 14+ pgPb) ) \ MIRG) )~ \ M[R]() )
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n >0,

where G(_lil)(x,y) = Jill’l)(w,y) =0.
We now show that d,, # 0 for n > 0 by induction on n. For n =0,
M(1}(b))? 1 2
(M[1)(6))* (L[1)(@)* _ {1, D £0.

(0,1) (0,1) (0,1)
Assume that d, # 0 for 0 < n < m for some integer m > 0. Then, the
system (2.9) is uniquely solvable for L[R,](a) and M[R,](b) as

LR,
(210 ( MR )
_ L [ 1+ paP00) —uGE(e,b) ( L|P,)(a) )
Cdat \ AGPY(a,0) 14 MK (a,a) ) \ MIP)(D)
for 0 <n < m+1. Substituting (2.10) into (2.8), we obtain (2.6). Hence
(2.11)
(Bny Pi)ru = (0, RaPe) + AL[R.|(a)L{P:](a) + pM[R,)(b) M[Py] (b)
= (0, PoPy) + AL[R,)(a) L[ P)(a)0kn + pM[R,](b) M| Py (b)kn
= %(U,Pf)&m, 0<k<n<m+1

d0=1+/14

(0, KV (2, ) Pi(z)) = L[Pi)(a)(1 — 8kn),
(0, JD (2, b) Pe()) = LIP)(B)(1 — bka),
and

d—d, + ALK} (MIPE)?

(o, P)
oL pBY 0, D)L (a)?
(o, P7) '
In particular,
_ ARmit, Bmg1)ap
i = (o, PT%IA—].) o 70

Conversely, assume d, # 0, n > 0 and define R,(z) by (2.6). Then
{R.(z)}2, is a monic PS and (2.8) holds. Then the equation (2.11)
implies that {R,(z)}%, is the MOPS relative to (-,-),, so that (-},
is quasi-definite. O
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COROLLARY 2.3. Ifo is positive-definite, then (-, ), is also positive-
definite if and only if d, > 0, n > 0.

Some special cases of Theorem 2.2 were handled in [6, 8, 14, 15] when
L=Idand,u:00rL=D’,M=D3,whereD=d%a.ndrandsa.re
non-negative integers.

COROLLARY 2.4. When p =0, {-,-)x:= (-, -)a,u Is quasi-definite if and
only ifd, =1+ )\K,(ll’l)(a, a) # 0, n > 0. In this case, we have

)‘L[Pn](a) (1, 0)(0, a:)
1+ 2K (@,0)

Ru(z) = Pu(z) —

and

From now on, we always assume that (-, -}, is quasi-definite and let
{R.(2)}22, be the MOPS relative to (-, )x -
If there exists a polynomial 7(z) of degree t(> 1) such that

(2.12) Lir¢)(a) = M[ng](b) =0, ¢ €11,
then
(2.13) (76, Phan = (0,7$) = (b, TP)r, ¢ a0d P € IL

For example, we have:
If L = D", where D = % and r > 0, then

Li(z - o) f(@))(@) =0, f €L

If L = A", where Af(z) = f(z +1) — f(z) is the forward difference
operator and r > 0, then

L [H(z —a— k)f(ac)} (@)=0, fell

THEOREM 2.5. Assume that there exists a monic polynomial n(x) of
degree t(> 1) satisfying (2.12). Then
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(i) (Long term recurrence relation)
n+t
=2 swhR
Pl

R; TR dj .
where s,; = (g; ’;2])1*: = <”(f"R2)J)-dL]i n—t<j<n+t(sppt=1,

Sn,n—t 7£ 07 n Z t);
(ii) (Quasi-orthogonality relative to o)

n+t
(2.14) m(@)Ra(z) = Y To;Pi(2),
j=n—t
wherer--w,l—zﬁn—t<'<n+t(r =1r #0
n3 — (G,Rj) ] = .7 = nntt 1y, I'nn-t ’

n>t).

Proof. Since deg(7R,) < n +t, we may write it as
n+t

z)R,(z) = Z sniR;i(z), n > 0.

Multiplying by Ry(z) and applying (:,-),, on both sides, we have
Snk(Bi, Ri)au = (0, Ry B) = (R, TR

so that s, =0,0<k<n—t sppy1 =1, and
sy = (Bn, ®Ri)au _ (0 BaTRe) 2 p iy
" (Rk7 Rk>)‘nu (Ua Pk2) dk ’

by (2.13) and (2.14). In Particular,
. <Rm7ar—t>)\, _ (Rn Rn) Au
Spn—t = ;é 0.
(Rn—tan—t>)\,y <R'n t)Rn ) A
Hence, we have (i). For (ii), the proof is essentially the same as the one
for (i). O
Note that

n—t<k<n+t

Sn—in—j _ Sn—jn—i

(Rn—z, n—z> A - <Rn—j;Rn—j>/\,u

and

Tn—i,n—j _ Tn—jn—i . . . .
G P " (g pry 0StSnohistsjsitt
? 1 1
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It is well known (cf. [4]) that if o is positive-definite, then Py(z), n > 1,
has n real simple zeros.

COROLLARY 2.6. Assume o is positive-definite and let [£,n] be the
true interval of orthogonality of o, that is, the smallest interval containing
all zeros of Py(z), n > 1, in (§,n). If there exists a polynomial m(z)
satisfying (2.12), then m(z)R,(z) has at least n — t nodal zeros, that is,
zeros of odd multiplicity, in (€,n) so that R,(z) has at least n —t — k
nodal zeros in (€,7), where k is the number of zeros of m(z) which have
odd multiplicity in (&, 7).

Proof. Let ©; < 25 < --- < z; be the nodal zeros of 7(z)R,(z) in
(&,n) and é(z) = Hle(x — z;). Then either ¢(z)m(z)Rn(z) > 0 or
¢(z)m(z)Ra(z) < 0 on [§,7)] so that

(0, (z)m(z)Rn(z)) # 0.
Now, by Theorem 2.5 (ii),

(0, ¢(z)m () Ra(2)) = Z T1i{0, #(z) Pj(z))
so that deg(¢) =4 >n —t. O

We now ask: When is the symmetric bilinear form (-, ), induced by
a moment functional? That is, when is there a moment functional 7 such
that

<f’g>/\,ﬂ = <T’fg>1 f a'ndg ell?

LEMMA 2.7. If both L[| and M|[] are linear algebra homomorphisms,
then

(£, 950 = (0, F9) + Mé(z — a), L{fg]) + n{d(z — b), M[fg]) = (7, fg)

where T is a moment functional defined by

(2.15) (7, f) = (0, f) + XNo(z — a), L[f]) + u(d(z — b), M[f]), f eIl

If L[] : I1 — II is any linear algebra homomdrphism, then for any
f(z)=> 1 oarzFin 1l

L[f] = i akL[a:k] = aoL[].] + zn: akL[x]k
k=0 k=1
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so that L[] is completely determined by L[1] and L[z]. Moreover, since
Lz] = L{z]L[1], either L[z] = 0 or L[1] = 1.

If L{z] = 0, then L[f] = aoL[1] = f(0)L[1] so that L{zf(z)] =0, f € II.
If L[1] = 1, then L{f] = ag + 3., axL[z]* = Y p_, axL[z]* = f(L[z]) so
that L{(z — a)f(2)] =0, f € 1L

Hence, if both L[] and M[-] are linear algebra homomorphisms so that
(f,9)»u = (7, fg), then there exists a polynomial 7(z) of degree ¢, 1 <
t < 2, such that (2.12) holds. To be precise, we have

z, if Lz =M[z]=0
z(z — b), if Lz} =0and M[1] =1
(2.16) m(z) = (a(c—a)a)c, 1fLH—1and M[[z}zo
[1] =

(z—a)(z—0b), if L1]=M[1]=1.

THEOREM 2.8. Assume that both L[-] and M|| are linear algebra
homomorphisms so that (-,-),, is induced by a moment functional T in

(2.15). Let
Proi(z) = (x — by) Po(z) — cnPyq(z), n >0,

where b,, and c,, are real numbers and ¢, # 0 for n > 1, be the three term
recurrence relation for MOPS {P,(z)}32, relative to o. Then the MOPS
{R.(x)}22, relative to T satisfy a three term recurrence relation

(2.17) Rii1(2) = (2 = o) Bn(2) — YaRna(2), n 20,

where

ﬂn = bn+t + Tantt-1 — Tnelnst, N > 0;
Yn = ?—dn::fn, n Z 1.
Proof. We have (2.14) : m(z)R,(z) = Z;l:fl_t o Pj(z), n > 0, where
Tnj = 0 for j < 0 and #(z) is the one in (2.16). Multiplying (2.17) by
7(z) and applying (2.14), we obtain

(2.18)
n+1+t n-+t n—1+t
Z Tn1,Pj(@) = (z — Br) Z Tni Pj Z Tn-13F;
j=n+1-t j=n—t j=n—-1-t

Multiplying (2.18) by P,.:(x) and applying o, we have
Tntln+t <0’, Pn+t> = Tnntt (0 xPrH—t) /@nrn,n+t <Ua P3+z>+rn,n+t-l<aa xPn+t—1Pn+t>7
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which gives

(& xPr%+t)

Tn+l, 4t = 2 - ﬂn + Tpntt-1 = bn+t - ,Gn + Tantt-1, N >0
P
(07 n+t)

since b, = {2l and (0,2PnPrs1) = {0, P2.1).

{o,P3)

On the other hand, we have by (2.7)
<T) RZ) dn 2 -2 1 dn——2dn
Yn = e = o, P, = Cn, 1> 1
(7', R2_1> dn—l < >dn—1 (U, Pr%—l) d?z—l O

Theorem 2.8 was proved in [14, Theorem 4.5] when L[] = M[-] = Id.

THEOREM 2.9. Assume that both L[-] and M|:] are linear algebra
homomorphisms so that (-,-)», is induced by a moment functional T in
(2.15). If o is semiclassical satisfying (ao)' = o, where a(z) and [(x)
are polynomials with deg(B3) > 1, then T is also semiclassical and satisfies

(rar) = (f'a+ 7B)o,
where 7(z) is the one in (2.16).
Proof. We have for any f € Il

{(rar), f) = —(mar, f')
= —(o,af') = M(§(z — a), L[raf)) — p(d(z — b), M[mafT])
= {(maa), f) = (W' + 7B)a, f)

so that (mar)’ = (7'a + 7B)0. O
In case L[] = M[] = Id, the class number of 7 is computed in [14,
Section 5).
3. Examples

Almost all the previously known examples are concerned with the
symmetric bilinear form (-, ) ,, where linear operators L[-] and M[| are
of the same kind, e.g., L[] = M[] = Id or L[] = D", M[-] = D° or
L[] = M[] = A. Here, we give some interesting non-standard examples.
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EXAMPLE 3.1. Consider a symmetric bilinear form defined by

(f,9)x = (0, fg) + AL[f](a)L[g)(a),

where L{f](z) = f(z?). Then L[r¢|(a) = 0, ¢ € II, where n(x) = z — a®.
Let {P,()}2, and {R,(z)}2, be the MOPS’s relative to o and (-, ),
respectively. Then by Corollary 2.4, we obtain

d, _1+,\Z L[P]

Thus if A # — (37, %(_;;)_)—1, then (-, -), is quasi-definite, and

1

R.(z) = Pu(z Z

n 1 -0 2($)

If moreover, o is positive-definite, then R,L( ) has at least n — 2 nodal
Zeros.

Now, consider another bilinear form defined by

(£, 90au = {0, fg) + AL[f](a) L{g](a) + nL[f](b)L[g](b),

where L[] is the same as above. Assume that o is positive-definite. If
a® = b, then (nf,9)r, = (f,mg)r,, f and g € II, for m(z) = = — a2
and R,(z) has at least n — 2 nodal zeros. If a® # b%, then (nf,g)r, =
(fymg)rw f and g € I, for m(z) = (z — a?)(z — b?) and R,(z) has at
least n — 4 nodal zeros.

EXAMPLE 3.2. Let {P,(z)}2, be a Bochner-Krall OPS relative to o
satisfying

P)(z) = Ze (z)P9(z) = M Po(z), n >0,

where £;(z) = ijo ¢;;z’ is a polynomial of degree < i, £x(z) # 0, and
)\n=€11n+€22n(n—1)+---+ZNNn(n—1)---(n—N+1)

is the eigenvalue parameter. Note here that N must be an even integer
(cf. {12, 13]). We now consider

B.1)  (fig)r= (o, fg) + ALn(f](a)Lng)(a), f and g € 1.
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Then
<7rf7.9>/\: (O"ﬂfg> = (f,ﬂ'g},\, fa‘ndgen
for m(z) = (z — a)"*! and
(Ln[Pj)( - )\2P2
d, _1+)\Z—————’Z[ ;lQ /\Z ,

Hence, if A # —(3 7. EJ—(;—)) n > 0, then (-, ), is quasi-definite and

the corresponding MOPS {R )}, is given by

n— =0 O 45

If moreover, o is positive-definite, then R,(z) has at least n — 2N — 2
real nodal zeros. In particular, let’s take a = 0 and

(o, f) = /Ooo e *f(z)dz (o > —1)

so that {P,(z)}2, = {L9( )}n_0 is the Laguerre polynomials:

19w = -y Y (1)L o
=0

7!

satisfying

cLO(z)" + (a + 1 — 2)L®(z) = —nL®(z), n > 0.
In this case, the symmetric bilinear form (3.1) becomes
"(0)g

(32  (fighr=(0,Fg) + A +1)*f(0)4'(0), fand g € II.
Since L(0) = (=1)"n!(™**) and (0, (L (z))?) = (n!)%, dn = 1+
A i (]J]f"), n > 0. Hence, if A # —(3 7] (J+a)2) 1 n > 0, then

J

the MOPS {R,(z)}2, relative to (-,-), in (3 2) is given by
nn! ("+°‘) (=17t (J+a)
dn—l =0 .7'

Ra(z) = L (z) + (=1)"X L¥(z), n > 0.

Moreover, R,(z) has at least n — 2 nodal zeros in (0, co) since
<£L'2f, g))\ = (U) x2fg) = (f, 1"2g>/\) fand g €1l
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EXAMPLE 3.3. Let o be a positive-definite moment functional defined
by

(33) (o, fla)y = 3 TH

z!

z

f(z), f(z) €T (1> 0).

=0

Then the corresponding MOPS is the Charlier polynomials {C(“ )( 131,
(13, 16]):

n

0@ =3 i (3), o

7=0

satisfying
(0, (CY(2))?) = p*nl, 2 0
and
tAVCW(z) + (u — 2)ACW(z) = —nCW(z), n > 0,

where Af(z) = f(z+1)— f(z) and Vf(z) = f(z) - f(z —1) are forward
and backward difference operators.

We first consider a symmetric bilinear form defined by

(3-4) (f,9)x = {0, fg) + AATF(0)A79(0),
where r > 1 is an integer. From the facts that C(0) = (~u)™ and
(3.5) ACW(z) = nC¥, (), n>0,
we have
1, fo<n<r
d, = 1+)\Z Jﬁj:r)y ifn>r

o, 521

Hence, if XA # —(3_7_, ((%-“T—),);,) ! n > r, then (-,-), is quasi-definite and
the corresponding MOPS {R,l“ r) (z)}2, is given by

c¥(z), f0<n<r
(T () = Ar! (M) e MY j-r
R}V (z) Cr(z#)(x) _Ar ((ir)# Z u(r 1)y C(“)(:r), ifn>r
n-1 .7 - 7'

j=
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Moreover, since (7 f, g)» = {o,7fg) = (f,7g), where
mz)=z(z—1)---(x —7)

R (z ) has at least n — 2r — 1 nodal zeros in (0, 00). OPS’s {R¥V}

and {Rn“ ’ )}Z":O for A > 0 (note that in these cases, (-, '), in (3.4) is always
positive-definite) were already considered by Bavinck and Koekoek [3]

and Bavinck [1], respectively. They express R¥"(z) for r = 0,1 in terms

of C¥* )(:c), C,(l‘i)l(:c —1), and C,(l’i)Q(x —2) and find infinite order difference
equations having them as eigenfunctions.

Now, consider another symmetric bilinear form defined by

(3.6) (£,90x = (0, fg) + AL[f1(0)L[g](0), f and g € I

where o is the Charlier moment functional as in (3.3) and L[] is a hy-
pergeometric type difference operator given by

Lly(z) = nA%(z) — (z + 1 — w)Ay(a).
Then using (3.5) and the three term recurrence relation for {C,(f‘ ) ()},

C¥)(z) = [z — (1 +n)]C¥(z) — unC¥,(z), n >0

we have
L[C,(f‘)](x) = —nAC,(l“)(x) — nC,(l“)(:L'), n>0
so that
1, ifn=0
_ J— 2 _
dn = 1+AZJ“ J ) i1,

Hence, if A # (Z;‘zl%)‘ , n > 1, then (-,-), in (3.6) is quasi-

definite and the corresponding MOPS {R,(z)}%°, is given by

C(“)(z) =1, ifn=0
R.(z) = An(n + p) (=) = (=1P (G = 1) ‘
() CW(z) + i Z oD C( (), ifn>1

=1
Moreover, since (7 f,g)x = (o, 7fg) = (f,mg),, where
m(z) = z(z — 1)(z — 2),
R,(z) has at least n — 5 nodal zeros in (0, 00).
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4. Operator Equations of Infinite Order

In this section, we consider a symmetric bilinear form

(4.1) (f,90x = (o, fg) + AL’[f](a)L"[g)(a)

where L[] is a linear operator with deg(L{f]) < deg(f) —1, A and a are
real numbers and 7 is a positive integer. We assume that the MOPS
{P.(z)}%2, are eigenfunctions of another linear operator M[-], that is,

MIP,)(x) = Ay Py(z), n > 0.
By setting for pand ¢ =0,1,2,---

KP9(g y) = Z U[E]Ej)ﬁ’j[ﬂ](y)’

=0
we have from Corollary 2.4 that (-, -}, is quasi-definite if and only if
(4.2) 14+ MK (a,a) #0, n>0.

We always assume that the condition (4.2) holds so that (-,-), is quasi-
definite and let {R,(z)}%, be the MOPS relative to {:,-)». Then

AL’ [Py (a)
14+ AKT7)(a, )

In the following, all the summations are understood to be equal to 0 if
the upper limit of the sum is less than the lower limit of the sum.

THEOREM 4.1. The MOPS {R,(z)}2, relative to (-,-), in (4.1) sat-
isfies the following operator equations

(43)  Ru(z) = Pu(z) — K" )a,z), n>0.

(4.4) {Z a;(z) Lly)(z) + ao(z, n)y (w)} + Myl(z) — Any(z) =0,

where

(4.5) ai(z) = 737% {ao(wyi)ﬂ(m)ﬁLi%(r)L" [F](x)
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and

(4.6)
0, n=20
arbitrary constant, 1<n<r
ao(z,m) = ¢ ag(z,n — 1) — K" Na, a)(An — Auet)

n—1
= ao(IL‘,’I‘) - E Ki(f»T)(a, a)()‘i+1 - )‘i)a n>r+1.

Proof. Note that deg(a;) < ¢ and o;(z) is independent of n, n > 1.
Substituting {1 + AK" ')(a a)}R,(z) for y in (4.4) gives

{1+2K7(a,0)} x AZ {ai(2) L[Ra)(2) + M[R,)(2) — pnRn(s) }

=\ {ao(x, n)Py(z) + Z o;(z)L[P,)(z) + L"[P,)(a)

it "[P](a)P,(z
@n x¥ (A"“A’%ﬁ’ Ef;’g( JE )} +A2{a0(x,n)K,5’;q>(a, 2)Pa(2)

i=r

+K\)(a,0) Y aui(2) L[Po)(2) — ao(a, n)L'[Prl(@) KT (a, )

Ms

i=1

—L’[Pn](a)Zai(a:)L’ K9 (a, :z)]} 0.

Since A can be any real number satisfying 1 + )\K,(f’r)(a, a) #0,n>0,
(4.7) is equivalent to

(4.8) ag(z, ) Py(z) + Z a;(z) L[ P,)(z)
+L'[P, j};: G = X) fg] ) g
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and

4.9)  KU7(a,a) {ao(x, n)Pa(z) + Y i) L [Pn](sc)}

i=1

~L'[P,(a ){aoxn ax)+2a, )}=0

for all z € R and n > 0. Thus to prove this theorem, it is sufficient to
show that {a;(z)}®, defined by (4.5) and (4.6) satisfy (4.8) and (4.9).

Multiplying (4.8) by K'")(a,a) and then subtracting (4.9) gives

L'[P.)(a) {ao(x,n)K,ﬁ”’)(a ) + Za, )K" (a, z)

+K{")(a,a) "z‘i o = 2T [Pi](a)Pi(m)} =0.

(o, P?)

i=r

Hence it is sufficient to show that {a;(z)}2, satisfy (4.8) and

ao(z, n) K (a, z) —f—Zaz(x K" (a, z)

o A — N)L7P;
+K )aaz( )UPZZ,;“) (@ _,

In fact, (4.8) is equivalent to (4.5) and (4.10) holds trivially for 0 < n < 7.
Assume that (4.10) holds up to n = m. Note that

P4 _ 1-(pg LP[Py)(x) L[ P ) (V)
(4.10) K®9(z,4) = K2 (z,y) + o F2) .
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For n = m + 1, the left-hand side of (4.10) becomes by (4.6) and (4.10)

ap(z,m + )K" (a,z) + Z o;(2) KT (a, z)

=1

HKG(0,0)Y (Amer - Agfl’a[;;il(a)au)

= {ao(:E)m) - KT(;’T)(O,, a)()‘m+1 - )‘m)}Kv(r:,O)(aa III)

+ 2 a;(z)K$9(a,z) + K57 (a, a)

Amil — PaPac Am — M) LT[P(a
{Z( (0 [P)(a)Fi(z) Z( )01[322;()()}

= ag(x,m)K"9(a,x) Zal )K" (a, z)

+K$(a,0) Z > O = Aizf'l[);)] (a)P(z)

= ooz, m)KS0(a,2) + Y (@)K (a,7)

e Q2 (An — ML [P)(@)P(z)  L’[Pn)(a
P S ALICLE R

i=r

{ao(a: m)Pp(x) + Zaz z)L[P,)(z)

+L7[Pp](a) z-: (Am = ’\iza l[D;](a)Pi(ﬂﬂ) }

=7

which is equal to 0 by the induction hypothesis for n = m and (4.10).
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EXAMPLE 4.1. Consider a bilinear form (-, ), as in (3.4). Then,
() T
K;"(0.0) = .
00 =2 =7
Since {C,({‘ )(a:) ®  satisfy a hypergeometric type difference equation
zAVy(z) + (1 — 2)Ay(z) = —ny(2),

{R¥"(z)}, satisty

{Za, )Aly(z) + ag(z,n)y (x)}

+zAVy(z) + (1 — z)Ay(z) + ny(z) =0,

where
-1 i-1 .
ai(z) = T{ao(x,i)(]}")(x) + Zaj(x)A’Ci(“)(x)
! por
=) A (G - )0 (2)
+ v
(-l & w6
-1 i—1 i
= —ir{ao(w,i)Cf“)(w) + 3 o ct@
! < i
. I R v (1)
+’!(.—#) ( - Z?Cj" (z) i>1
(t—r) = W(j—r)!
and
0, n=0
arbitrary, 1<n<r
ao(z,n) = -1 i-1 i
gt u
xr+zz ) nZT+1
i=r j=r ‘7 - 7" J - T)'
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As a special case, if we choose r = 0, then

i—1

-1 o i .
ai(z) = 7{00(%7’)@( @+ 3 et
L G-0C @)

+ pr S }

Bavinck and Koekoek [3] have found a difference equation of infinite order
for {Rg“’o)(a:)}f;o (see also [1] for the case r = 1).

ExAMPLE 4.2. Consider a bilinear form

(f, 90 = (o, fg) + AfD(0)"(0),

where o is a positive-definite moment functional defined by
@f) = [ Fe)eda, (a>-1)
0

so that {P,(z)}2, = {Lgf‘)(m)}g":o is the monic Laguerre polynomials
(see Example 3.2). Then,

n L(a))(r)(o)(L(a) (r) T it rta
en(,0) =3~ Lo
Kn (0>0)_Z ( (L(a)( —Z< 7'+a ) '
j=0

Since {ng ) (z)}2, satisfies a second order differential equation
zy'(z) + (@ +1 - 2)y/(2) = —ny(z), n 20,

the corresponding MOPS {R,(z)}2, relative to (-,-), satisfy

{Za )y () + ao(z, n)y(a:)}

+zy"(z) + (@ + 1 — z)y/(z) + ny(z) =0,
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a(z) = _Z.—!l{ao(z,i)LE")(:c)+iaj(m)(,;§a))<j>(z)

» =L (G — i) ’) N(0)Li(x)
HIE) ZJ o }

j=r
— L@
_ (@) (]
= 2!{ozoach )L Z5(x)
. =1 . —r (j+a\ r (@)
. — (=1 (LY (x
() (H—a)Z(J )(—1) ‘ ()L )}
r+a o 7!
and
0, n=20_0
arbitrary, 1<n<r
ao(:z:,n) = n—1 i—r . 2
J+r+a
ao<x,r)+zz( ) Rl
i o \ Tta
As a special case, if we choose r = 0, then
-1 i—1 i
a(z) = S {ao (z,9)L x)L( i(z)
il j=1
ita i-1 j—i)(~1) (J+a)L(a)( )
+il(— ( ) Z }
j=0 !

J. Koekoek and R. Koekoek [9] have found a differential equation of
infinite order when r = 0.
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