BEST APPROXIMATIONS IN $L_P(S, X)$

MUN BAE LEE, SUNG HO PARK* AND HYANG JOO RHEE

ABSTRACT. Let G be a closed subspace of a Banach space X and let (S,Ω,μ) be a σ -finite measure space. It was known that $L_1(S,G)$ is proximinal in $L_1(S,X)$ if and only if $L_p(S,G)$ is proximinal in $L_p(S,X)$ for 1 . In this article we show that this result remains true when "proximinal" is replaced by "Chebyshev". In addition, it is shown that if <math>G is a proximinal subspace of X such that either G or the kernel of the metric projection P_G is separable then, for $0 , <math>L_p(S,G)$ is proximinal in $L_p(S,X)$.

1. Introduction

Throughout this paper, X is a Banach space, G is a closed subspace of X and (S, Ω, μ) is a σ -finite measure space.

Let K be a nonempty subset of X and let $x \in X$. An element k_0 in K satisfying

$$||x - k_0|| = d(x, K) := \inf_{k \in K} ||x - k||$$

is called a best approximation of x in K. For any $x \in X$, the set of all best approximations of x in K is denoted by

$$P_K(x) = \{k \in K : ||x - k|| = d(x, K)\}.$$

The set K is called proximinal (resp., Chebyshev) if for every $x \in X$, $P_K(x)$ is nonempty (resp., a singleton).

Received February 26, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 41A65, 46B20.

Key words and phrases: Chebyshev, proximinal, pointwise proximinal, proximity map, strongly measurable.

^{*}This studies were supported in part by the Basic Research Institute Program, BRSI-98-1412, Moe, Korea and the Sogang University Research Grant in 1999.

Let K be a proximinal subset of X. The set-valued map $P_K: X \to 2^K$ thus defined is called the metric projection onto K and the kernel of the metric projection P_K is the set

$$\ker P_K := \{x \in X : 0 \in P_K(x)\}\$$
$$= \{x \in X : ||x|| = d(x, K)\}.$$

A map $p: X \to K$ which associates with each element of X one of its best approximations in K is called a proximity map.

Many authors investigated the proximinality of $L_p(S,G)$ in $L_p(S,X)$ when (S,Ω,μ) is a finite measure space [1], [3], [4], [5], [6], [8] and [10]. You and Guo [11] proved the equivalent relation between the proximinality of $L_p(S,G)$ in $L_p(S,X)$ and the pointwise proximinality of L(S,G) in L(S,X). From this result, they improved those in [3], [4], [5] and [8] for a σ -finite measure space. In particular, they proved that if G is a separable and proximinal subspace of X then $L_p(S,G)$ is proximinal in $L_p(S,X)$ (0 . In order to prove the above result, they used the measurable selection theorem due to Himmelberg and Vleck [2] (see also Theorem 2.7).

In section 3, we improve the results of Khalil and Saidi [6] and Saidi [10]. To do this, we also use the measurable selection theorem due to Himmelberg and Vleck [2].

2. Preliminaries

DEFINITION 2.1. Let X be a Banach space. A function from S to X is called *strongly measurable* if it is the pointwise limit of a sequence of simple Borel measurable functions from S to X, equivalently, f is Borel measurable and has a separable range.

Denote by L(S,X) the space of all strongly measurable functions from (S,Ω,μ) to X. Functions equal a.e. are identified. For $1 \leq p < \infty$, $L_p(S,X)$ is the Banach space (for $0 , Frechet space) consisting of strongly measurable functions <math>f: S \to X$ such that $\int ||f(s)||^p d\mu(s)$ is finite. For $p = \infty$, $L_\infty(S,X)$ is the Banach space of essentially bounded strongly measurable functions $f: S \to X$. For $f \in L_p(S,X)$,

$$||f||_p = \left(\int ||f(s)||^p d\mu(s)\right)^{\frac{1}{p}} \quad 1 \le p < \infty,$$

and

$$||f||_{\infty} = \operatorname{ess sup}_{s \in S} ||f(s)||.$$

For $A \in \Omega$ and a strongly measurable function $f: S \to X$, we write I_A for the characteristic function of A and $I_A \otimes f$ denote the function defined by $(I_A \otimes f)(s) = I_A(s)f(s)$. In particular, for $A \in \Omega$ and $x \in X$, $(I_A \otimes x)(s) = I_A(s)x$.

DEFINITION 2.2. [11] Let $f \in L(S,X)$ and $D \subset L(S,X)$. $f_0 \in D$ is called a pointwise best approximation of f in D if, for all $g \in D$, we have $||f(s) - f_0(s)|| \le ||f(s) - g(s)||$ a.e.

In [11], You and Guo proved the following theorem.

THEOREM 2.3. [11] Let 0 . Then the following are equivalent:

- (i) L(S,G) is pointwise proximinal in L(S,X);
- (ii) $L_p(S,G)$ is proximinal in $L_p(S,X)$.

THEOREM 2.4. If L(S,G) is pointwise proximinal in L(S,X), then $L_{\infty}(S,G)$ is proximinal in $L_{\infty}(S,X)$.

Proof. Let $f \in L_{\infty}(S, X)$. Then there exists $f_0 \in L(S, G)$ such that $||f(s) - f_0(s)|| \le ||f(s) - q(s)||$ a.e. for any $q \in L(S, G)$ and so $||f(s) - f_0(s)|| \le ||f(s) - g(s)||$ a.e. for any $g \in L_{\infty}(S, G)$. Since $0 \in G$, $||f_0(s)|| \le 2||f(s)||$ a.e. Thus $f_0 \in L_{\infty}(S, G)$. Therefore $f_0 \in P_{L_{\infty}(S,G)}(f)$. □

By Theorem 2.3 and Theorem 2.4, we get the following corollary. This corollary is a generalization of Theorem 1.1 in [1] for a σ -finite measure space.

COROLLARY 2.5. Let $0 . If <math>L_p(S, G)$ is proximinal in $L_p(S, X)$ then $L_{\infty}(S, G)$ is proximinal in $L_{\infty}(S, X)$.

Now we state some measurable selection theorems.

THEOREM 2.6. [9] Let (M,d) be a separable metric space. If a multifunction $F: S \to 2^M$ having complete values is weakly measurable, in the sense that for each open subset O of M the set $F^{-1}(O) := \{s \in S : F(s) \cap O \neq \emptyset\}$ is measurable in S, then there exists a M-valued Borel measurable function $f: S \to M$ such that $f(s) \in F(s)$ for all $s \in S$.

THEOREM 2.7. [2] Let (M,d) be a separable metric space. Then a multifunction $F: S \to 2^M$ having complete values is compactly measurable, in the sense that for each compact subset K of M the set $F^{-1}(K) := \{s \in S: F(s) \cap K \neq \emptyset\}$ is measurable in S if and only if there exists a countable set $\{V_n : n \in \mathbb{N}\}$ of M-valued Borel measurable functions defined on (S, Ω, μ) such that $F(s) = \overline{\{V_n(s) : n \in \mathbb{N}\}}$ for all $s \in S$.

3. Main Results

In [11], You and Guo proved the following theorem. In this article we want to replace proximinality by Chebyshevity.

THEOREM 3.1. [11] Let 1 . Then the following are equivalent:

- (i) $L_1(S,G)$ is proximinal in $L_1(S,X)$;
- (ii) $L_p(S,G)$ is proximinal in $L_p(S,X)$.

Similar to the proof of Theorem 1.1 in [5], we have the following

THEOREM 3.2. Let $1 \leq p < \infty$. If $L_p(S,G)$ is proximinal in $L_p(S,X)$, then for any $f \in L_p(S,X)$

$$d_p(f, L_p(S, G)) = \left(\int d(f(s), G)^p d\mu(s)\right)^{\frac{1}{p}}.$$

Proof. Case 1: p = 1.

This is a special case of Lemma 2.10 in [9].

Case 2: 1 .

Define a map $\Phi: L_p(S,X) \to L_1(S,X)$ by

$$\Phi(f)(s) = ||f||^{p-1}f(s)$$

for all $f \in L_p(S,X)$. Then Φ is 1-1. Take any $g \in L_1(S,X)$ and put $f(s) = ||g(s)||^{\frac{1}{p}-1}g(s)$ if $g(s) \neq 0$ and f(s) = 0 otherwise. Then $f \in L_p(S,X)$ and

$$\Phi(f)(s) = ||f(s)||^{p-1}f(s) = ||f(s)||^{p-1}||g(s)||^{\frac{1}{p}-1}g(s)
= ||g(s)||^{1-\frac{1}{p}}||g(s)||^{\frac{1}{p}-1}g(s) = g(s).$$

Hence Φ is onto. Suppose that $L_p(S,G)$ is proximinal in $L_p(S,X)$. Let $f \in L_p(S,X)$. By Theorem 3.1, $L_1(S,G)$ is proximinal in $L_1(S,X)$ and so there exists $g \in L_p(S,G)$ such that

$$\|\Phi(f) - \Phi(g)\|_1 \le \|\Phi(f) - \Phi(h)\|_1$$

for all $h \in L_p(S, G)$. By Case 1, for almost all $s \in S$, $\Phi(g)(s)$ is a best approximation of $\Phi(f)(s)$ in G and so for almost all $s \in S$,

$$\|\Phi(f)(s) - \Phi(g)(s)\| \le \|\Phi(f)(s) - \|f(s)\|^{p-1}z\|$$

for any $z \in G$. Put $w(s) = ||f(s)||^{1-p}||g(s)||^{p-1}g(s)$ if $f(s) \neq 0$ and w(s) = 0 otherwise. Then for almost all $s \in S$,

$$||f(s) - w(s)|| \le ||f(s) - z||$$

for any $z \in G$. Since $||w(s)|| \le 2||f(s)||$ for a.e. $s \in S$, $w \in L_p(S, G)$ and so w is a best approximation of f in $L_p(S, G)$. Hence

$$d_p(f, L_p(S, G)) = ||f - w||_p = \left(\int d(f(s), G)^p d\mu(s)\right)^{\frac{1}{p}}.$$

COROLLARY 3.3. Let $1 \leq p < \infty$ and let $L_p(S,G)$ be proximinal in $L_p(S,X)$. Then $g \in L_p(S,G)$ is a best approximation of $f \in L_p(S,X)$ if and only if for almost all $s \in S$, g(s) is a best approximation of f(s) from G.

Proof. The necessity is clear. Let $f \in L_p(S, X)$ and g be a best approximation of f in $L_p(S, G)$. Then by Theorem 3.2,

$$d_p(f,L_p(S,G)) = \left(\int d(f(s),G)^p d\mu(s)
ight)^{rac{1}{p}}$$

and so

$$\int \|g(s) - f(s)\|^p d\mu(s) = \int d(f(s), G)^p d\mu(s).$$

Since $d(f(s), G)^p \le ||f(s) - g(s)||^p$ for all $s \in S$, ||g(s) - f(s)|| = d(f(s), G) for a.e. $s \in S$. Thus for almost all $s \in S$, g(s) is a best approximation of f(s).

COROLLARY 3.4. Let $1 \leq p < \infty$ and $L_p(S,G)$ be proximinal in $L_p(S,X)$. If G is Chebyshev in X then $L_p(S,G)$ is Chebyshev in $L_p(S,X)$.

THEOREM 3.5. Let $1 \leq p < \infty$. If $L_p(S, G)$ is Chebyshev in $L_p(S, X)$, then G is a Chebyshev subspace of X.

Mun Bae Lee, Sung Ho Park and Hyang Joo Rhee

Proof. Clearly G is a proximinal subspace of X [7]. Let $x_0 \in X$ and $y \in P_G(x_0)$. Choose a measurable subset A such that $0 < \mu(A) < \infty$. For any $x \in X$ define $f_x : S \to X$ by

$$f_x(s) = (I_A \otimes x)(s)$$

for all $s \in S$. Since $||x_0 - y|| \le ||x_0 - z||$ for all $z \in G$, we have

$$||f_{x_0}(s) - f_y(s)|| \le ||f_{x_0}(s) - g(s)||$$

for all $s \in S$ and $g \in L_p(S, G)$. Since $L_p(S, G)$ is Chebyshev in $L_p(S, X)$, f_y is the unique best approximation of f_{x_0} . Thus g is the unique best approximation of g0 in g0.

Next we can get some corollaries by Theorem 3.1, Corollary 3.4 and Theorem 3.5.

COROLLARY 3.6. Let 1 . Then the following are equivalent:

- (i) $L_1(S,G)$ is Chebyshev in $L_1(S,X)$;
- (ii) $L_p(S,G)$ is Chebyshev in $L_p(S,X)$.

COROLLARY 3.7. Let 1 . Then the following are equivalent:

- (i) $l_1(G)$ is Chebyshev in $l_1(X)$;
- (ii) $l_p(G)$ is Chebyshev in $l_p(X)$.

THEOREM 3.8. Let G be a proximinal subspace of X. If, for every $f \in L(S, X)$, there exists a closed separable subspace Y of G such that

$$P_G(f(s)) \cap Y \neq \emptyset$$
 for a.e. $s \in S$,

then L(S,G) is pointwise proximinal in L(S,X).

Proof. Since $0 \in Y$, we may assume, without loss of generality, that

$$P_G(f(s)) \cap Y \neq \emptyset$$
 for all $s \in S$.

Define $\phi: S \to 2^Y$ by

$$\phi(s) = P_G(f(s)) \cap Y$$

for all $s \in S$. Then each $\phi(s)$ is a nonempty closed subset of Y so it is a complete subset of Y.

Best approximations in $L_p(S, X)$

Now we want to prove that ϕ is compactly measurable. Let B be a compact subset of Y. Since B is proximinal in X,

$$\phi^{-1}(B) = \{ s \in S : \phi(s) \cap B \neq \emptyset \}
= \{ s \in S : P_G(f(s)) \cap Y \cap B \neq \emptyset \}
= \{ s \in S : d(f(s), B) = d(f(s), G) \}.$$

Since the subtraction and the norm in X are continuous and f is measurable, the mapping $s \to d(f(s), A)$ is measurable for any set A. Thus $\phi^{-1}(B)$ is measurable. Therefore, ϕ is compactly measurable. By Theorem 2.7, there exists a measurable function $g: S \to G$ such that $g(s) \in Y$ and $g(s) \in P_G(f(s))$ for all $s \in S$. Hence L(S, G) is pointwise proximinal in L(S, X).

COROLLARY 3.9. Let G be a proximinal subspace of X and $1 \le p < \infty$. Then for every $f \in L_p(S, X)$, there exists a closed separable subspace Y of G such that

$$P_G(f(s)) \cap Y \neq \emptyset$$
 for a.e. $s \in S$

if and only if $L_p(S,G)$ is proximinal in $L_p(S,X)$.

Proof. (\Rightarrow) Similar to the proof of Theorem 3.8, we obtain a strongly measurable function $g: S \to G$ such that $g(s) \in Y$ and $g(s) \in P_G(f(s))$ for all $s \in S$. Since $g(s) \in P_G(f(s))$ for all $s \in S$, we have that $\|g(s)\| \leq 2\|f(s)\|$ for all $s \in S$ and so $g \in L_p(S,G)$. Moreover, g is a best approximation of f in $L_p(S,G)$.

(\Leftarrow) Take any $f \in L_p(S,X)$ and let g be a best approximation of f in $L_p(S,G)$. Since g(S) is separable, there is a countable subset $\{a_n\}$ of g(S) such that $\{a_n\}$ is dense in g(S). Let $Y = \overline{\operatorname{span}\{a_n\}}$. Then Y is a closed separable subspace of G and $g(S) \subset Y$. By Corollary 3.3, for almost all $s \in S$, g(s) is a best approximation of f(s) in G. Thus

$$P_G(f(s)) \cap Y \neq \emptyset$$
 for a.e. $s \in S$.

REMARK. (1) We can easily show that the sufficiency of Corollary 3.9 holds for $0 and <math>p = \infty$.

(2) In Theorem 4.1 of [10], Saidi proved that for a finite measure space (S, Ω, μ) , 0 and a proximinal subspace <math>G of X, $L_p(S, G)$ is proximinal in $L_p(S, X)$ if the following two conditions hold:

Mun Bae Lee, Sung Ho Park and Hyang Joo Rhee

(i) There exists a positive constant $R \geq 1$ such that

$$\overline{B(0,1) + \ker P_G} \subset B(0,R) + \ker P_G$$

where $B(0,r) = \{g \in G : ||g|| \le r\}.$

(ii) For $f \in L_p(S, X)$, there exists a closed separable subspace Y of G such that

$$P_G(f(s)) \cap Y \neq \emptyset$$
 for a.e. $s \in S$.

(3) In Remark 4.1 of [10], Saidi proved that for a finite measure space (S, Ω, μ) and $1 \leq p < \infty$, if $L_p(S, G)$ is proximinal in $L_p(S, X)$, then for every $f \in L_p(S, X)$, there exists a closed separable subspace Y of G such that

$$P_G(f(s)) \cap Y \neq \emptyset$$
 for a.e. $s \in S$.

THEOREM 3.10. Let G be a proximinal subspace of X. If G or $\ker P_G$ is separable, then L(S,G) is pointwise proximinal in L(S,X).

Proof. If G is separable, it follows from Theorem 3.4 in [11]. Now we suppose that $\ker P_G$ is separable. Let $f \in L(S,X)$ and define $\phi: S \to 2^{\ker P_G}$ by

$$\phi(s) = f(s) - P_G(f(s))$$

for all $s \in S$. Then each $\phi(s)$ is a nonempty closed subset of $\ker P_G$ so it is a complete subset of $\ker P_G$.

Now we want to prove that ϕ is compactly measurable: Let B be a compact subset of $\ker P_G$. Then

$$\phi^{-1}(B) = \{ s \in S : \phi(s) \cap B \neq \emptyset \}
= \{ s \in S : (f(s) - P_G(f(s))) \cap B \neq \emptyset \}
= \{ s \in S : f(s) \in B + G \}
= f^{-1}(B + G).$$

Since B is compact and G is closed, B+G is closed. Thus $\phi^{-1}(B)$ is measurable. Therefore, ϕ is compactly measurable. By Theorem 2.7, there exists a measurable function $g: S \to \ker P_G$ such that $f(s) - g(s) \in P_G(f(s))$ for all $s \in S$. Let $\hat{g} = f - g \in L(S, G)$. Then

$$||f(s) - \hat{g}(s)|| = ||f(s) - (f(s) - g(s))|| = d(f(s), G)$$

for all $s \in S$. Hence L(S, G) is pointwise proximinal in L(S, X).

Best approximations in $L_p(S, X)$

COROLLARY 3.11. Let G be a proximinal subspace of X. If G or $\ker P_G$ is separable, then for $0 , <math>L_p(S,G)$ is proximinal in $L_p(S,X)$.

Proof. This follows from Theorem 2.3, Theorem 2.4 and Theorem 3.10.

REMARK. Let G be a proximinal subspace of X. In Theorem 1.1 of [6], Khalil and Saidi proved that for a finite measure space (S, Ω, μ) and a proximinally null compact subspace G of X, if G or $\ker P_G$ is separable, then $L_1(S, G)$ is proximinal in $L_1(S, X)$.

References

- W. Deeb and R. Khalil, Best approximation in L(X, Y), Math. Proc. Camb. Phil. Soc. 104 (1988), 527-531.
- [2] C. J. Himmelberg, and F. S. Van Vleck, Multifunctions on abstract measurable spaces and applications to stochastic decision theory, Ann. Mat. Pure Appl. 101 (1974), 229-236.
- [3] D. Hussein and R. Khalil, Best approximation in tensor product spaces, Soochow J. Math. 18 (1992), No. 4, 397-407.
- [4] R. Khalil, Best approximation in L^p(I, X), Math. Proc. Camb. Phil. Soc. 94 (1983), 277-279.
- [5] R. Khalil and W. Deeb, Best approximation in $L^p(\mu, X)$ II, J. Approx. Theory **59** (1989), 296-299.
- [6] R. Khalil and F. Saidi, Best approximation in $L^1(I, X)$, Proc. Amer. Math. Soc. 123 (1995), 183-190.
- [7] M. B. Lee and S. H. Park, Proximity maps for certain spaces, Bull. Korean Math. Soc. 94 (1997), 259-271.
- [8] W. A. Light, Proximinality in $L_p(S, Y)$, Rocky Mountain J. Math. 19 (1989), 251-259.
- [9] W. A. Light and E. W. Cheney, Approximation theory in tensor product spaces, Lect. Notes in Math. Vol. 1169, Springer-Verlag, New York/Berlin, 1985.
- [10] F. B. Saidi, On the smoothness of the metric projection and its application to proximinality in $L^p(S,X)$, J. Approx. Theory 83 (1995), 205-219.
- [11] You Zhao-Yong and Guo Tie-Xin, Point-wise best approximation in the space of strongly measurable functions with applications to best approximation in $L^p(\mu, X)$, J. Approx. Theory 78 (1994), 314-320.

Mun Bae Lee, Sung Ho Park, Department of Mathematics, Sogang University, Seoul 121-742, Korea

Hyang Joo Rhee, Department of General Studies, Duksung Women's University, Seoul 132-714, Korea