REMARKS ON WEAK HYPERMODULES

B. DAVVAZ

ABSTRACT. H_v-rings first were introduced by Vougiouklis in 1990. Then Darafsheh and the present author defined the H_v-ring of fractions $S^{-1}R$ of a commutative hyperring. The largest class of multi-valued systems satisfying the module-like axioms is the H_v-module. In this paper we define H_v-module of fractions of a hypermodule. Some interesting results concerning this H_v-module is proved.

1. Basic Definitions of Hyperstructures

The concept of a hyperstructure first was introduced by Marty in [2]. A hyperstructure is a set H together with a function $\cdot : H \times H \rightarrow \mathcal{P}^*(H)$ called hyperoperation, where $\mathcal{P}^*(H)$ denotes the set of all non-empty subsets of H. If $A, B \subseteq H$, $x \in H$ then we define

$$A \cdot B = \bigcup_{a \in A, b \in B} a \cdot b, \quad x \cdot B = \{x\} \cdot B, \quad A \cdot x = A \cdot \{x\}.$$

DEFINITION 1.1. A hyperstructure (H, \cdot) is called a hypergroup if

(i) $x \cdot (y \cdot z) = (x \cdot y) \cdot z, \forall x, y, z \in H,$

(ii) $a \cdot H = H \cdot a = H, \forall a \in H.$

DEFINITION 1.2. A multivalued system $(R, +, \cdot)$ is a hyperring if

(i) $(R, +)$ is a hypergroup,

(ii) (R, \cdot) is a semi hypergroup,

(iii) (\cdot) is distributive with respect to $(+)$, i.e., for all x, y, z in R we have

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z), \quad (x + y) \cdot z = (x \cdot z) + (y \cdot z).$$

Received February 2, 1998.

1991 Mathematics Subject Classification: 20N20.

Key words and phrases: hypergroup, hyperring, hypermodule, H_v-ring, H_v-module, exact sequence.
A hyperring may be commutative with respect to $(+)$ or (\cdot). If R is commutative with respect to both $(+)$ and (\cdot), then we call it a commutative hyperring. If there exists $u \in R$ such that $x \cdot u = u \cdot x = \{x\}$, $\forall x \in R$, then u is called the scalar unit of R and is denoted by 1.

Definition 1.3. M is a left hypermodule over hyperring R (R-hypermodule) if $(M, +)$ is a commutative hypergroup and there exists a map $\cdot : R \times M \rightarrow \mathcal{P}^*(M)$ denoted by $(r, m) \rightarrow rm$ such that for all r_1, r_2 in R and m_1, m_2 in M, we have

\[
\begin{align*}
 r_1(m_1 + m_2) &= r_1m_1 + r_1m_2, \\
 (r_1 + r_2)m_1 &= r_1m_1 + r_2m_1, \\
 (r_1r_2)m_1 &= r_1(r_2m_1).
\end{align*}
\]

There are generalizations of the above hyperstructures (hypergroup, hyperring and hypermodule) where axioms are replaced by the weak ones. That is instead of the equality on sets one has non-empty intersections.

H_v-structures first introduced by Vougiouklis in the Fourth AHA congress (1990) [5]. In this paper we are interested in H_v-rings and H_v-modules.

Definition 1.4. A multivalued system $(R, +, \cdot)$ is called an H_v-ring if the following axioms hold:

(i) $(R, +)$ is an H_v-group, i.e.,

\[
(x + y) + z \cap x + (y + z) \neq \emptyset, \quad \forall x, y, z \in R,
\]

\[
a + R = R + a = R, \quad \forall a \in R,
\]

(ii) $(x \cdot y) \cdot z \cap x \cdot (y \cdot z) \neq \emptyset, \quad \forall x, y, z \in R,$

(iii) (\cdot) is weak distributive with respect to $(+)$, i.e., for all $x, y, z \in R$,

\[
x \cdot (y + z) \cap (x \cdot y + x \cdot z) \neq \emptyset,
\]

\[
(x + y) \cdot z \cap (x \cdot z + y \cdot z) \neq \emptyset.
\]

Definition 1.5. M is a left H_v-module over an H_v-ring R if $(M, +)$ is a weak commutative H_v-group and there exists a map $\cdot : R \times M \rightarrow \mathcal{P}^*(M)$ denoted by $(r, m) \rightarrow rm$ such that for all r_1, r_2 in R and m_1, m_2 in M, we have

\[
\begin{align*}
 r_1(m_1 + m_2) \cap (r_1m_1 + r_1m_2) &\neq \emptyset, \\
 (r_1 + r_2)m_1 \cap (r_1m_1 + r_2m_1) &\neq \emptyset, \\
 (r_1r_2)m_1 \cap r_1(r_2m_1) &\neq \emptyset.
\end{align*}
\]
Remarks on weak hypermodules

Definition 1.6. Let M_1 and M_2 be two H_v-modules over an H_v-ring R. A mapping $f : M_1 \rightarrow M_2$ is called an $R - H_v$-homomorphism if, \(\forall x, y \in M_1 \) and \(\forall r \in R \), the following relations hold:

\[
f(x + y) \cap (f(x) + f(y)) \neq \emptyset, \quad f(rx) \cap rf(x) \neq \emptyset.
\]

f is called an inclusion R-homomorphism if, \(f(x+y) \subseteq f(x)+f(y) \), \(f(rx) \subseteq rf(x) \).

Finally f is called a strong R-homomorphism if, \(f(x + y) = f(x) + f(y) \), \(f(rx) = rf(x) \).

If there exists a strong one to one homomorphism from M_1 onto M_2, then M_1 and M_2 are called isomorphic.

In this paper, we shall work over a commutative hyperring R with scalar unit, and we shall assume that M is an R-hypermodule. We remark that according to [1], a non-empty subset S of R is a strong multiplicatively closed subset (s.m.c.s) if the following conditions hold:

(i) \(1 \in S \),
(ii) \(a \cdot S = S \cdot a = S, \forall a \in S \).

Darafsheh and the present author in [1] defined the H_v-ring of fractions $S^{-1}R$ of a commutative hyperring. The construction of $S^{-1}R$ can be carried through with an R-hypermodule M in place of the hyperring R.

In section 2 of this paper we introduce the set of fractions $S^{-1}M$ and define addition and multiplication by elements of $S^{-1}R$, then we get that $S^{-1}M$ is an $S^{-1}R - H_v$-module as well as some interesting results with this respect.

2. H_v-module of Fractions

Let X be the set of all ordered pairs (m, s) where $m \in M$, $s \in S$. For $A \subseteq M$ and $B \subseteq S$, we denote the set \(\{(a, b) \mid a \in A, b \in B\} \) by (A, B).

The relation \sim is defined on $P^*(X)$ as follows:

$(A, B) \sim (C, D)$ iff there exists a subset T of S such that $T \cdot (B \cdot C) = T \cdot (D \cdot A)$.

Lemma 2.1. \sim is an equivalence relation on $P^*(X)$.

601
B. Davvaz

If we restrict the relation \(\sim \) on \(X \), and identify \((m, x) \in X \) with the subset \(\{(m, x)\} \) of \(X \), then we obtain the following two lemmas.

Lemma 2.2. For \((m_1, s_1), (m_2, s_2) \in X \), we have \((m_1, s_1) \sim (m_2, s_2) \) iff there exists \(T \subseteq S \) such that \(T \cdot (s_1 \cdot m_2) = T \cdot (s_2 \cdot m_1) \).

Lemma 2.3. \(\sim \) is an equivalence relation on \(X \).

The equivalence class containing \((m, s) \) is denoted by \([m, s] \) and we let \(S^{-1}M \) to be the set of all the equivalence classes.

In \(\mathcal{P}^*(X) \), the equivalence class containing \((A, B) \) is denoted by \([[A, B]] \).

We define
\[
\langle \langle A, B \rangle \rangle = \bigcup_{(C, D) \in [[A, B]]} \{ [c, d] \mid c \in C, d \in D \}.
\]

Lemma 2.4. For all \(m \in M, s \in S \), we have \(\langle \langle m, s \rangle \rangle = \langle \langle sm, ss \rangle \rangle \).

Now we define addition and multiplication by elements of \(S^{-1}R \), as follows:
- \([m_1, s_1] \oplus [m_2, s_2] = \bigcup \{ [a, b] \mid a \in A, b \in B \} = \langle \langle s_1 m_2 + s_2 m_1, s_1 s_2 \rangle \rangle \), where the union is over \((A, B) \in [[s_1 m_2 + s_2 m_1, s_1 s_2]] \)
- \([r, s] \odot [m_1, s_1] = \bigcup \{ [a, b] \mid a \in A, b \in B \} = \langle \langle rm_1, ss_1 \rangle \rangle \), where the union is over \((A, B) \in [[rm_1, ss_1]] \)

In both cases \([m_1, s_1], [m_2, s_2] \in S^{-1}M \) and \([r, s] \in S^{-1}R \).

Theorem 2.5. \(\oplus \) and \(\odot \) defined above are independent of the choices of representatives \([m_1, s_1], [m_2, s_2] \) and \([r, s] \) and that \(S^{-1}M \) satisfies the axioms of an \(S^{-1}R - H_v \)-module.

If we define
\[
r \odot [m_1, s_1] = \langle \langle rm_1, s_1 \rangle \rangle
\]
then \(S^{-1}M \) becomes an \(R - H_v \)-module.

Proof. The proof is straightforward and omitted. \(\square \)

Definition 2.6. Hypersubmodule \(U \) of \(M \) is called a hyperisolated submodule if it satisfies the following axiom:
For all \(A \subseteq U, B \subseteq S \) if \((X, Y) \in [[A, B]] \) then \(X \subseteq U \).
Remarks on weak hypermodules

Lemma 2.7. Let U be a hyperisolated submodule of M then the set $S^{-1}U = \{ [u, s] \mid u \in U, \ s \in S \}$ is an $R - H_0$-submodule of $S^{-1}M$.

Proof. First, we prove that $(S^{-1}U, \oplus)$ is an H_0-subgroup of $(S^{-1}M, \oplus)$. For every $[m_1, s_1], [m_2, s_2] \in S^{-1}U$, we have

$$[m_1, s_1] \oplus [m_2, s_2] = \bigcup_{(A, B) \in [[s_2 m_1 + s_1 m_2, s_1 s_2]]} \{ [m, s] \mid m \in A, \ s \in B \}.$$

Since $m_1, m_2 \in U$ then we get $s_2 m_1 + s_1 m_2 \subseteq U$ and since U is a hyperisolated submodule of M, then $A \subseteq U$. Therefore $[m_1, s_1] \oplus [m_2, s_2] \subseteq S^{-1}U$.

Now we prove the equality $S^{-1}U = [m_1, s_1] \oplus S^{-1}U$, for all $[m_1, s_1] \in S^{-1}U$. Suppose $[m, s] \in S^{-1}U, \ m \in U$. Since $s, s_1 \in S$, by definition of S there exists $s_2 \in S$ such that $s \in s_1 s_2$. And since U is a hypersubmodule, we have $s_2 m_1 + (s_1 + 1)U = U$. Now $m \in U$ and $s_2 m_1 + (s_1 + 1)U = U$ imply that there exists $m_2 \in U$ such that $m \in s_2 m_1 + s_1 m_2 + m_2$ hence $m \in s_2 m_1 + s_1 (m_2 + s_3 m_2)$ where $1 \in s_3 s_1$. So there exists $x \in m_2 + s_3 m_2$ such that $m \in s_2 m_1 + s_1 x$, therefore $[m, s] \in [m_1, s_1] \oplus [x, s_2]$ implying $S^{-1}U \subseteq [m_1, s_1] \oplus S^{-1}U$.

It remains to prove that $R \circ (S^{-1}U) \subseteq S^{-1}U$. To do this suppose that $[u, s] \in S^{-1}U$ and $r \in R$, then

$$r \circ [u, s] = \bigcup_{(A, B) \in [[ru, s]]} \{ [x, y] \mid x \in A, \ y \in B \}.$$

Since $u \in U$ we have $ru \subseteq U$ and since U is a hyperisolated submodule of M we get $A \subseteq U$. Consequently $r \circ [u, s] \subseteq S^{-1}U$. Therefore the lemma is proved. □

Theorem 2.8. Let M_1 and M_2 be two R-hypermodules and let $f : M_1 \rightarrow M_2$ be a strong R-homomorphism. Then the map $S^{-1}(f) : S^{-1}M_1 \rightarrow S^{-1}M_2$ defined by $S^{-1}(f)[m, s] = [f(m), s]$, is an $S^{-1}R - H_0$-homomorphism.

Proof. Suppose that $[m_1, s_1], [m_2, s_2] \in S^{-1}M_1$ and $[r, s] \in S^{-1}R$. First we show that $S^{-1}(f)$ is well-defined. If $[m_1, s_1] = [m_2, s_2]$ then there exists $T \subseteq S$ such that $T \cdot (s_1 \cdot m_2) = T \cdot (s_2 \cdot m_1)$ which implies $f(T \cdot (s_1 \cdot m_2)) = f(T \cdot (s_2 \cdot m_1))$ and so $T \cdot (s_1 \cdot f(m_2)) = T \cdot (s_2 \cdot f(m_1))$ or
[f(m_1), s_1] = [f(m_2), s_2]. Therefore S^{-1}(f) is well-defined.
Moreover, S^{-1}(f) is an S^{-1}R - H_v-homomorphism because, we have
\[
S^{-1}(f)([m_1, s_1] \oplus [m_2, s_2])
= S^{-1}(f) \left(\bigcup \{ [a, b] \mid a \in A, b \in B \} \right) \tag{1}
= \bigcup \{ S^{-1}(f)([a, b]) \mid a \in A, b \in B \} \tag{2}
= \bigcup \{ [f(a), b] \mid a \in A, b \in B \} \tag{3}
\]
and
\[
S^{-1}(f)([m_1, s_1] \oplus S^{-1}(f)([m_2, s_2])
= [f(m_1), s_1] \oplus [f(m_2), s_2]
= \bigcup \{ [a, b] \mid a \in A, b \in B \} \tag{4}
= \bigcup \{ [a, b] \mid a \in A, b \in B \} \tag{5}
\]
Therefore we have
\[
\{ [f(a), b] \mid a \in s_1 m_2 + s_2 m_1, b \in s_1 s_2 \}
\subseteq S^{-1}(f)([m_1, s_1] \oplus [m_2, s_2]),
\]
\[
\{ [a, b] \mid a \in f(s_1 m_2 + s_2 m_1), b \in s_1 s_2 \}
\subseteq S^{-1}(f)([m_1, s_1]) \oplus S^{-1}(f)([m_2, s_2]).
\]
And so
\[
S^{-1}(f)([m_1, s_1] \oplus [m_2, s_2]) \cap S^{-1}(f)([m_1, s_1]) \oplus S^{-1}(f)([m_2, s_2]) \neq \emptyset.
\]
Similarly, we get
\[
\{ [f(a), b] \mid a \in r m_1, b \in s s_1 \} \subseteq S^{-1}(f)([r, s] \odot [m_1, s_1]),
\]
\[
\{ [a, b] \mid a \in r f(m_1), b \in s s_1 \} \subseteq [r, s] \odot S^{-1}(f)([m_1, s_1]).
\]
And so
\[
S^{-1}(f)([r, s] \odot [m_1, s_1]) \cap [r, s] \odot S^{-1}(f)([m_1, s_1]) \neq \emptyset,
\]
which proves that S^{-1}(f) is an S^{-1}R - H_v-homomorphism. \qed

604
Remarks on weak hypermodules

Lemma 2.9. The natural mapping $\Psi : M \rightarrow S^{-1}M$ defined by $\Psi(m) = [m, 1]$ is an inclusion R-homomorphism.

Proof. For every $m_1, m_2 \in M$, we have

$$\Psi(m_1 + m_2) = \{[\alpha, 1] \mid \alpha \in m_1 + m_2\} \subseteq \bigcup_{(A,B)\in[[m_1+m_2,1]]} \{[a, b] \mid a \in A, b \in B\}$$

$$= [m_1, 1] \oplus [m_2, 1]$$

$$= \Psi(m_1) \oplus \Psi(m_2).$$

And for every $r \in R$ and $m \in M$ we have

$$\Psi(rm) = \{[\alpha, 1] \mid \alpha \in rm\} \subseteq \langle\langle rm, 1\rangle\rangle = r \circ \Psi(m).$$

Therefore Ψ is an inclusion R-homomorphism.

Definition 2.10. Let M_1 and M_2 be two R-hypermodules and $f, g : M_1 \rightarrow M_2$ be R-homomorphisms. We define the mapping $S^{-1}(f + g)$ from $S^{-1}M_1$ into $P^*(S^{-1}M_2)$ as follows:

$$S^{-1}(f + g)([m, s]) = \langle\langle f(m) + g(m), s\rangle\rangle.$$

Proposition 2.11. Let M_1, M_2 and M_3 be R-hypermodules and $f, g : M_1 \rightarrow M_2$ and $h : M_2 \rightarrow M_3$ be R-homomorphisms. Then

(i) $S^{-1}(f + g) = S^{-1}(f) + S^{-1}(g),$

(ii) $S^{-1}(ho f) = S^{-1}(h)oS^{-1}(f),$

(iii) $S^{-1}(id_{M_1}) = id_{S^{-1}M_1}.$

Proposition 2.12. Let C_1 be the category of R-hypermodules and strong R-homomorphisms and let C_2 be the category of $R - H_v$-modules and $R - H_v$-homomorphisms. Then the mapping $S^{-1} : C_1 \rightarrow C_2$ is a functor.

Definition 2.13. Let M_1, M_2 and M_3 be R-hypermodules ($R - H_v$-modules respectively) and let U be a subhypermodule (H_v-submodule) of M_3. The sequence of strong R-homomorphisms $M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3$ is said to be U-exact if $\text{Im}f = g^{-1}(U)$.
THEOREM 2.14. Let U be an H_v-isolated submodule of M_3 and the sequence $M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3$ be U-exact. Then the sequence $S^{-1}M_1 \xrightarrow{S^{-1}(f)} S^{-1}M_2 \xrightarrow{S^{-1}(g)} S^{-1}M_3$ is $S^{-1}U$-exact, i.e., $\text{Im}S^{-1}(f) = (S^{-1}(g))^{-1}(S^{-1}U)$.

Proof. Suppose that $[m, s] \in \text{Im}S^{-1}(f)$ then there exists $m_1 \in M_1$ such that $[m, s] = [f(m_1), s]$. Since $f(m_1) \in \text{Im}f = g^{-1}(U)$, there exists $u \in U$ such that $f(m_1) \in g^{-1}(u)$ and so $[f(m_1), s] \in \{ [x, s] \mid x \in g^{-1}(u) \}$ which implies $[f(m_1), s] \in (S^{-1}(g))^{-1}([u, s])$. Therefore $[f(m_1), s] \in (S^{-1}(g))^{-1}(S^{-1}U)$.

Now, if $[u, t] \in (S^{-1}(g))^{-1}(S^{-1}U)$, then $[u, t] \in (S^{-1}(g))^{-1}([u, s] \mid u \in U, s \in S \}$ which implies $[u, t] \in \{ [x, s] \mid g(x) \in U, s \in S \}$. Therefore for some x where $g(x) \in U$ we have $[u, t] = [x, s]$. From $g(x) \in U$ we get $x \in \text{Im}f$ and so $[x, s] \in \text{Im}S^{-1}(f)$. Therefore $[u, t] \in \text{Im}S^{-1}(f)$. \qed

3. The Fundamental Relations γ^* and ϵ^*

Consider the left H_v-module M over an H_v-ring R. The relation γ^* is the smallest equivalence relation on R such that the quotient R/γ^* is a ring. γ^* is called the fundamental equivalence relation on R and R/γ^* is called the fundamental ring, see [3], [4]. The fundamental relation ϵ^* on M over R is the smallest equivalence relation such that M/ϵ^* is a module over the ring R/γ^*, see [4].

According to [4], if \mathcal{U} denotes the set of all expressions consisting of finite hyperoperations of either on R and M or the external hyperoperation applied on finite subsets of R and M. Then a relation ϵ can be defined on M whose transitive closure is the fundamental relation ϵ^*. The relation ϵ is defined as follows: for all $x, y \in M$,

$$x \epsilon y \iff \{ x, y \} \subseteq u, \text{ for some } u \in \mathcal{U}.$$

Suppose $\gamma^*(r)$ is the equivalence class containing $r \in R$ and $\epsilon^*(x)$ is the equivalence class containing $x \in M$. On M/ϵ^* the sum \circ and the external product \Box using the γ^* classes in R, are defined as follows: for all $x, y \in M$ and for all $r \in R$,

$$\epsilon^*(x) \circ \epsilon^*(y) = \epsilon^*(c), \quad \forall c \in \epsilon^*(x) + \epsilon^*(y),$$

$$\gamma^*(r) \Box \epsilon^*(x) = \epsilon^*(d), \quad \forall d \in \gamma^*(r) \cdot \epsilon^*(x).$$

606
Remarks on weak hypermodules

Now, we will prove two theorems concerning the fundamental relations γ^* and ϵ^*.

Let ϵ^*_s be the fundamental equivalence relation on $S^{-1}M$ and U_s be the set of all expressions consisting of finite hyperoperations of either on $S^{-1}R$ and $S^{-1}M$ or of external hyperoperation. In this case $S^{-1}M/\epsilon^*_s$ is an $S^{-1}R/\gamma^*_s$-module.

THEOREM 3.1. $S^{-1}M/\epsilon^*_s$ is an R/γ^*-module.

Proof. We can define

$$\gamma^*(r) * \epsilon^*_s([m, s]) = \gamma^*_s([r, 1]) \Box \epsilon^*_s([m, s]).$$

Then it is clear that $S^{-1}M/\epsilon^*_s$ is an R/γ^*-module. \square

THEOREM 3.2. There is an R/γ^*-homomorphism $h : M/\epsilon^* \rightarrow S^{-1}M/\epsilon^*_s$.

Proof. We define $h(\epsilon^*(m)) = \epsilon^*_s([m, 1])$. First we prove that h is well defined. If $\epsilon^*(m_1) = \epsilon^*(m_2)$ then $m_1 \epsilon^* m_2$ which holds iff $\exists x_1, \ldots, x_{m_1}, u, \ldots, u_{m_2} \in U$ with $x_1 = m_1, x_{m_1} = m_2$ such that $\{x_i, x_{i+1}\} \subseteq u, i = 1, \ldots, m$ which implies $\{[x_i, 1], [x_{i+1}, 1]\} \subseteq \langle \langle u, 1 \rangle \rangle \subseteq U_s$. Therefore $[m_1, 1] \epsilon^*_s[m_2, 1]$ and so $\epsilon^*_s([m_1, 1]) = \epsilon^*_s([m_2, 1])$. Thus h is well-defined.

h is a homomorphism because

$$h(\epsilon^*(a) \circ \epsilon^*(b)) = h(\epsilon^*(c)) = \epsilon^*_s([c, 1]), \quad \forall c \in \epsilon^*(a) + \epsilon^*(b),$$

$$h(\epsilon^*(a)) \circ h(\epsilon^*(b)) = \epsilon^*_s([a, 1]) \circ \epsilon^*_s([b, 1]) = \epsilon^*_s([d, s]),$$

$$\forall[d, s] \in \epsilon^*_s([a, 1]) \oplus \epsilon^*_s([b, 1]),$$

setting $d = c \in a + b, s = 1$. So it is proved that $h(\epsilon^*(a) \circ \epsilon^*(b)) = h(\epsilon^*(a)) \circ h(\epsilon^*(b))$.

And also we have

$$h(\gamma^*(r) \Box \epsilon^*(m)) = h(\epsilon^*(a)) = \epsilon^*_s([a, 1]), \quad \forall a \in \gamma^*(r) \epsilon^*(m),$$

$$\gamma^*(r) * h(\epsilon^*(m)) = \gamma^*(r) * \epsilon^*_s([m, 1]) = \gamma^*_s([r, 1]) \Box \epsilon^*_s([m, 1]) = \epsilon^*_s([b, s]),$$

$$\forall [b, s] \in \gamma^*_s([r, 1]) \oplus \epsilon^*_s([m, 1]).$$

Therefore, since we can take $b = a \in r \cdot m$ and $s = 1$, we get

$$h(\gamma^*(r) \Box \epsilon^*(m)) = \gamma^*(r) * h(\epsilon^*(m))$$

607
B. Davvaz

Hence h is a homomorphism of modules.

ACKNOWLEDGMENTS. The author would like to thank his Ph. D. thesis supervisor professor M. R. Darafsheh for his guidance and helpful discussions throughout this work.

References

Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

Department of Mathematics, Tarbiat Modarres University, P.O. Box 14155-4838, Tehran, Iran

E-mail: davvaz@vax.ipm.ac.ir

608