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ON THE PRINCIPAL IDEAL THEOREM
Gyu WHAN CHANG

ABSTRACT. Let R be an integral domain with identity. In this paper
we will show that if R is integrally closed or if t-dimR < 1, then
R{{X,}] satisfies the principal ideal theorem for each family {X,}
of algebraically independent indeterminates if and only if R is an
S-domain and it satisfies the principal ideal theorem.

1. Introduction

Krull’s principal ideal theorem [10, Theorem 142] states that for a
nonunit element z of a Noetherian ring R, if P is a prime ideal of R
which is minimal over xR, then the height of P is at most 1. Thus if
R is a Noetherian domain, then each minimal prime ideal of a nonzero
principal ideal has height one. Kaplansky [10, page 104] called Krull’s
principal ideal theorem the most important single theorem in the theory
of Noetherian rings. .

Let R be an integral domain. As [5], we say that R satisfies the princi-
pal ideal theorem (PIT) if each minimal prime ideal of a nonzero principal
ideal of R has height one. Examples of integral domains satisfying PIT
include Noetherian domains, Krull domains, one-dimensional domains.

An integral domain R is called an S-domain (the S stands for Seiden-
berg) if for each height one prime ideal P of R, the expansion P[X] of
P to R[X] has again height one. For any integral domain R, R[X] is an
S-domain {1, Theorem 3.2]. Barucci, Anderson and Dobbs [5, Proposi-
tion 6.1] showed that if R[X] satisfies PIT, then R satisfies PIT and R
is an S-domain. They also showed the converse if R is a GCD-domain
or if R has locally funneled spectrum [5, Theorem 6.5]. As the main
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result of this paper, in Theorem 4, we show that the converse holds for
integrally closed domains. If the integral closure R’ of R satisfies PIT,
then R satisfies PIT [5, Corollary 5.2]. In Theorem 3, we generalize [5,
Proposition 6.3] to an intégral domain with ¢-dimR < 1 (note that if a
GCD-domain R satisfies PIT, then ¢-dimR < 1). Example 9 shows that
the converse of 5, Corollary 5.2] fails.

Recall that R is atomic if each nonzero nonunit of R is a product
of irreducible elements. Anderson, Chapman and Smith (3, Theorem
2.6] showed that if R is an atomic integral domain, then each nonzero
prime ideal of R is a union of height one prime ideals of R if and only
if R satisfies PIT, and that if one (hence two) of these two conditions
is satisfied, then each nonzero nonunit of R is contained in a height one
prime ideal of R. They [3, Example 2.8] also showed that Int(Z)={f(z) €
Q[X]|f(r) € Z for all r € Z} is atomic and each nonzero nonunit of Int(Z)
is contained in a height one prime ideal of R but Int(Z) does not satisfy
PIT. :

Throughout this paper, R denotes an integral domain with quotient
field K and R’ the integral closure. For an ideal I of R, I, = (I71)7!,
I = U{J,|J is afinitely generated subideal of I'}. If I = I, (resp. I = I,),
I is said to be a t-ideal (resp. divisorial). By the Zorn’s lemma argument,
one can easily show that each t-ideal is contained in a maximal ¢-ideal
which is an ideal maximal among proper t-ideals and each maximal ¢-
ideal is a prime ideal. Our notation will be essentially that of [7, 10].

2. Main Results

It is well-known that a minimal prime ideal of a ¢-ideal is also a t-ideal.
Using this fact, we have the following result (cf. [5, Proposition 3.1], [5,
Proposition 4.1}).

PROPOSITION 1. An integral domain R satisfies PIT if and only if Rp
satisfies PIT for each maximal t-ideal P of R.

Proof. Let ) be a prime ideal of R which is minimal over a principal
ideal rR. Sincé rR is a t-ideal, @ is a t-ideal. Thus there is a maximal
t-ideal P of R containing Q). Since Rp satisfies PIT and QRp is minimal
over rRp, htQ=ht(QRp) = 1. Hence R satisfies PIT. The converse is
obvious. O
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LEMMA 2. (cf. [8, Proposition 1.1]) Suppose that @ is a proper prime
ideal of R|X] which is minimal over a nonzero principal ideal fR[X] of
R[X]. If P:= QN R #0, then Q = P[X].

Proof. Let R’ be the integral closure of R. Then R/[X] is the integral
closure of R[X]. Choose a prime ideal @’ of R'[X] such that @' N R[X] =
Q (10, Theorem 44]. Since Q is minimal over f R[X], (' is minimal over
fR[X] and so Q' is a t-ideal. Since Q' is a t-ideal and QNR 2P,
Q = (@' N R)[X] 9, Lemma 4.1]. Thus Q@ = (@' N R)[X]N R[X] =
(@ N R)[X] = P{X]. o

THEOREM 3. (cf. [2, Lemma 4.10]) Let R be an integral domain with
t-dimR < 1. Then the following statements are equivalent.

1. R is an S-domain.

2. R[X] satisfies PIT.

3. R[Xy,- -+, X,] satisfies PIT for each positive integer n.

4. R{{X,}) satisfies PIT for each family {X,} of algebraically inde-
pendent indeterminates.

Proof. If t-dimR = 0, then R is a field. So the result is trivial. Thus
we assume that t-dimR = 1.

(1) = (2) Let f be a nonzero element of R[X], and let Q) be a prime
ideal of R[X] which is minimal over fR[X]. QN R =0, htQ =1
(10, Theorem 36]. If P := QN R # 0, Q@ = P[X] by Lemma 2. Since
P[X] is a t-ideal of R[X], P is a t-ideal of R [9, Corollary 2.3]. Thus
htQ=ht(P[X]) =P =1

(2) = (1) [5, Proposition 6.1].

(2) = (3) R[Xi] is an S-domain [1, Theorem 3.2]. If @ is 2 maximal
t-ideal of R[X,], then QN R = 0 or Q = P[X;] where P :=QNR#0[8,
Proposition 1.1]. Thus htQ = 1 and hence t-dimR[X;] = 1. By induction
on n and the proof (1) = (2), we get that R[X, ..., Xy] satisfies PIT.

(3) = (2) Clear.

(3) & (4) [5, Proposition 6.4]. O

REMARK. If a Priifer v-multiplication domain R satisfies PIT, then
Rp satisfies PIT for each maximal t-ideal P of R by Proposition 1. Since
Rp is a valuation domain [9, Theorem 3.2], dimRp = 1 and hence t-
dimR = 1. Since a GCD:domain is a Priifer v-multiplication domain, (5,
Proposition 6.3] is a special case of Theorem 3.
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THEOREM 4. Let R be an integrally closed domain. Then R[X] sat-
isfies PIT if (and only if) R satisfies PIT and R is an S-domain.

Proof. Suppose that @ is a proper prime ideal of R[X] which is min-
imal over a nonzero principal ideal fR[X] of R[X]. If QN R = 0, then
ht@ = 1 [10, Theorem 36]. Thus we assume that P := Q N R # 0.
By Lemma 2, @ = P[X]. Since Rp is an integrally closed S-domain,
it satisfies PIT and htQ=ht(QR[X]z_p)), we may assume that R is a
quasi-local domain with maximal ideal P.

Since K[X]is a UFD, f = f{'... fo, where each f; is a prime element
of K[X]. Choose nonzero elements b; € R such that g; := b;f; € R[X].
Let b = bf'... b5, then bf = g7'...g%. So bf € g;R[X] C g A X] =
9:K[X] N R[X] by the fact that R is integrally closed [7, Corollary 34.9].
Since g;A;'[X] is a prime ideal of R[X] and b & g, A, [X], f € g:A;1[X].

Since P[X] is minimal over fR[X], g;A;'[X] € P[X]. So there is
h; € A;'[X] with g;h; & P[X]. Since R = Ayp, C A,An C R, A, is
invertible. By [7, Theorem 28.1], Ay is invertible. Since R is quasi-local,
Ay is principal. Since fR[X] C AfR[X] C P[X], P is minimal over A;
and hence htQ) =ht(P[X])=htP = 1. Hence R[X] satisfies PIT. (W

The following result is an immediate consequence of Theorem 4, [I,
Theorem 3.2] and [5, Proposition 6.4].

COROLLARY 5. Let R be an integrally closed domain. Then R[{X,}]
satisfies PIT for each family {X,} of algebraically independent indeter-
minates if and only if R satisfies PIT and R is an S-domain.

An integral domain R is called a half-factorial domain (HFD) if R is
atomic, and given any two irreducible factorizations a = a;as...a, =
biby ... by, of an element a € R, then n = m.

COROLLARY 6. Let R[X| be an HFD. Then R|X]| satisfies PIT if and
only if R satisfies PIT and R is an S-domain.

Proof. Suppose that R[X] is an HFD. Then R is integrally closed [6,
Theorem 2.2]. By Theorem 4, the proof is completed. O

Let S C T be integral domains. Then the pair S, T satisfies the going-
down theorem (GD) if P 2 Fy is a chain of prime ideals of S and if Q is
a prime ideal of 7" such that NS = P, then there exists a prime ideal
Qo of T such that Qy C @ and QN S = B, [10, p. 28].
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COROLLARY 7. Suppose that R C R’ satisfies GD. Then R[X] satis-
fies PIT if (and only if) R satisfies PIT and R is an S-domain.

Proof. Let the notation be as Theorem 4 and let P’ be a prime ideal of
R' lying over P. Since f € P'[X] and R'[X] is integral over R[X], P'[X]
is minimal over fR'[X]. By the same way as the proof of Theorem 4, we
can show that A;R}, is principal, i.e., AfRp = aRp for some coefficient
a of f [7, Proposition 7.4]. So P’ is minimal over aR'. By GD, P is
minimal over aR. Hence ht(P[X])=htP = 1. (I

PROPOSITION 8. If R' is an S-domain, then R is an S-domain.

Proof. For a height one prime ideal P of R, Rj is the integral closure
of Rp where S = R — P [7, Proposition 10.2]. Since R§ is an S-domain
and ht(P[X)]) = ht(PRp[X]), we may assume that R is a quasi-local
domain with maximal ideal P and dimR = 1. Since R’ is an S-domain of
dimension 1, dimR'[X] = 2 and hence dimR{X] = 2. Thus ht(P[X]) =
1. O
In the following example we show that the converse of Proposition 8 is
not true. Barucci, Anderson and Dobbs [5, Corollary 5.2] proved that if
R’ satisfies PIT, then R satisfies PIT. The following example also shows
that the converse fails or serves as a counterexample to the converse.

EXAMPLE 9. Let K be a field, D; = K[X,Y] the polynomial ring in
two indeterminates over K, M; = (X) and N; = (X — 1,Y), then M;
and N; are prime ideals. of D;, respectively, of height 1 and 2, and if
S = Dy — (M, U N,), then D = (D)s is a two-dimensional semi-local
domain with two maximal ideals M = (M;)s and N = (N;)g such that
htM = 1, htN = 2.

Let R = K-+M, then R' is a two-dimensional semi-quasi-local domain
with two maximal ideals M and N’ = N N R such that Ry, = Dy =
K[X,Y)x-1y) is a Krull domain (See [4, page 3]). Moreover, we claim
that R := K + (M N N’) is an integral domain such that:

1. R is a quasi-local, two-dimensional S-domain with quotient field

K(X,Y) and M N N’ is the maximal ideal of R. (See [4]).
9. R’ is the'integral closure of R and R’ is not an S-domain. (See [4]).
3. R|[Z] satisfies PIT but R'[Z] does not satisfy PIT, where Z is an
indeterminate over K(X,Y').
4. R and R’ satisfy PIT.
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Proof. (3) Let f be a nonzero element of R[Z], and let Q) be a prime
ideal of R[Z] which is minimal over fR[Z]. If @ N R = 0, htQ = 1 [10,
Theorem 36). If P:= QNR # 0, Q = P[Z] C (M NN')[Z] by Lemma 2.
Let P’ be a prime ideal of R’ lying over P with P’ C N’. Then P'[Z] is
minimal over fR'[Z] since R'[Z] is integral over R[Z]. Thus P'R}.[Z] is
minimal over fR}.[Z]. Since R),[Z] is a Krull domain |7, Theorem 43.11
(3)], htP' =ht(P'R},)=ht(P'R},(Z]) = 1. Since htN’ = 2, P' C N'. So
htP =1 and htQ= ht(P[Z]) = 1.

Since R' is not an S-domain, R'[Z] does not satisfy PIT [5, Proposition
6.1].

(4) Since R[Z] satisfies PIT, R satisfies PIT. Also R}, satisfies PIT
since R}y, is a Krull domain, and R), satisfies PIT since dimR},=htM =
1. By [5, Proposition 3.1], R’ satisfies PIT. ' O
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