FIBREWISE INFINITE SYMMETRIC PRODUCTS AND M-CATEGORY

HANS SCHEERER AND MANFRED STELZER

ABSTRACT. Using a base-point free version of the infinite symmetric product we define a fibrewise infinite symmetric product for any fibration $E \to B$. The construction works for any commutative ring R with unit and is denoted by $R_f(E) \to B$. For any pointed space B let $G_i(B) \to B$ be the i-th Ganea fibration. Defining $M_{\text{cat}}(B) := \inf\{i \mid R_f(G_i(B)) \to B \text{ admits a section}\}$ we obtain an approximation to the Lusternik–Schnirelmann category of B which satisfies e.g. a product formula. In particular, if B is a 1-connected rational space of finite rational type, then $M_{\text{cat}}(B)$ coincides with the well-known (purely algebraically defined) M-category of B which in fact is equal to $\text{cat}(B)$ by a result of K. Hess. All the constructions more generally apply to the Ganea category of maps.

0. Introduction

Let \mathcal{S} be the category of simplicial sets. It carries the structure of a closed model category where the weak equivalences are the maps which turn into homotopy equivalences by realization and where the cofibrations are the injective maps [16]. Any map $Y \to X$ factors as a weak equivalence followed by a fibration which we call 'the' associated fibration.

We recall the Ganea construction [10]. Given a map $p : Y \to X$ with X pointed by $*$ we let $G_0(p) : G_0(p,Y) \to X$ be the associated fibration; suppose the fibration $G_i(p_0) : G_i(p,Y) \to X$ with fibre F_i is defined, $i \geq 0$, then let $G_{i+1}(p,Y) \to X$ be the map $\pi : G_i(p,Y) \cup_{p_i} C(F_i) \to X$ where $C(F_i)$ is the cone on F_i and $\pi | G_i(p,Y) = G_i(p), \pi | C(F_i) = *$ and

Received September 8, 1998.
1991 Mathematics Subject Classification: 55P50, 55P62.
Key words and phrases: fibrewise infinite symmetric products, rational homotopy theory, M-category, approximations to Lusternik–Schnirelmann category.
define \(G_{i+1}(p) : G_{i+1}(p, Y) \to X \) as the associated fibration. Recall that
\[
\text{cat}(X) := \inf \{ i \mid G_i(*) \to X \text{ admits a section} \}. \]
In this absolute case we write \(G_i(X) \to X \) for the fibration \(G_i(*) \to X \).

Let now \(p : E \to B \) be a map of 1-connected rational spaces of finite type over \(\mathbb{Q} \). Let \(M_B \) be a Sullivan model of \(B \) and \(M_B \otimes_{\tau} M' \) a \(KS \)-extension modeling \(p \) (the index \(\tau \) should remind that the differential on the tensor product is twisted).

We say that \(p \) has an \(M \)-section, if there is an \(M_B \)-module map
\[
r : M_B \otimes_{\tau} M' \to M_B \text{ with } r \circ p^* = \text{id}. \]
Define \(M \text{-cat}(p) := \inf \{ i \mid G_i(p) \text{ admits an } M \text{-section} \} \). In particular, \(M \text{-cat}(B) := M \text{-cat}(\ast \to B) \) has been introduced in [12] as an algebraic approximation to \(\text{cat}(B) \).
According to [13] one has \(M \text{-cat}(B) = \text{cat}(B) \).

Let \(R \) be a non-trivial commutative ring with unit. For \(X \in S \) let \(R \otimes X \) be the free module generated by \(X \) and let \(R(X) \subset R \otimes X \) be the affine subspace consisting of linear combinations of simplices with coefficient sum 1. If \(R = \mathbb{Z} \), then \(R(X) \) is a basepoint free version of the infinite symmetric product on \(X \) (see [2]). Given a fibration \(Y \to X \) in \(S \) there is a fibrewise version of \(R(-) \) denoted by \(R_f(Y) \to X \) according to [7].

Our main result says that \(M \text{-cat}(p) \leq k \), if and only if \(Q_f(G_k(p, E)) \to B \) admits a section.

By [13] this implies that for \(B \) a simply connected rational space of finite rational type \(G_k(B) \to B \) admits a section if and only if \(Q_f(G_k(B)) \to B \) admits one.

Thus for any \(R \) as above, any map \(g : Y \to X \) we may define an invariant \(M_R \text{-cat}(g) := \inf \{ i \mid R_f(G_i(g, Y)) \to X \text{ admits a section} \} \). In section 4 we will comment this notion and prove e.g. a product formula.

In section 1 we recall the construction of \(R_f(Y) \to X \). In section 2 we study an algebraic construction serving as a bridge to the spatial construction (over \(\mathbb{Q} \)). In section 3 we prove the main result.

We would like to thank W. Chachólski, E. Dror Farjoun and J. Scherer for answering our questions about homotopy colimits, and D. Stanley for many discussions on the subject of this paper.
1. Construction of $R_f(Y) \rightarrow X$

Let R be a non-trivial commutative ring with unit 1. For $X \in \mathcal{S}$ let $R \otimes X$ be the free module generated by X; in particular, $R \otimes X$ is a simplicial abelian group. According to [2] we consider $R(X) \subseteq R \otimes X$, $(R(X))_n := \{\sum \lambda_i x_i \mid x_i \in X_n, \sum \lambda_i = 1, \lambda_i \neq 0 \text{ for only finitely many indices } i\}$. Given a base point $* \in X$ the composition $R(X) \rightarrow R \otimes X \rightarrow R \otimes X/R \otimes *$ is a weak equivalence. (Moreover $R(X)$ can be identified with kernel $(R \otimes X \rightarrow R \otimes *)$).

There is a natural map $X \rightarrow R(X)$, $x \mapsto 1x$, hence $R(_)$ is a coaugmented functor $\mathcal{S} \rightarrow \mathcal{S}$ in the sense of [7]. It takes weak equivalences to weak equivalences and its value on a point space is the point space. Therefore there is a fibrewise version of the functor by [7]. We recall its definition:

Let $\pi : Y \rightarrow X$ be a fibration. Denote by I the simplex category of X [4]; its objects are the simplices $\sigma : \Delta[n] \rightarrow X$ ($\Delta[n]$ the standard n–simplex), the morphisms $(\Delta[n], \sigma) \rightarrow (\Delta[m], \tau)$ are the order preserving maps $\alpha : \Delta[n] \rightarrow \Delta[m]$ with $\alpha^*(\tau) = \sigma$. Let \tilde{X} denote the functor $I \rightarrow \mathcal{S}$ given on objects by $\tilde{X}((\Delta[n], \sigma)) = \Delta[n]$; let $\tilde{Y} : I \rightarrow \mathcal{S}$ be the functor with $\tilde{Y}((\Delta[n], \sigma)) := \sigma^*(Y)$, the pullback of $Y \rightarrow X$ by σ. We then have canonical weak equivalences $\text{hocolim} \tilde{X} \cong \text{colim} \tilde{X} \cong X$ and $\text{hocolim} \tilde{Y} \cong \text{colim} \tilde{Y} \cong Y$.

We now form the following diagram:

```
\begin{center}
\begin{tikzpicture}
  \node (Y) at (0,0) {$Y$};
  \node (X) at (0,-1) {$X$};
  \node (Yh) at (-1,2) {$\text{hocolim} \tilde{Y}$};
  \node (Xh) at (-1,0) {$\text{hocolim} \tilde{X}$};
  \node (R_Yh) at (-2,1) {$\text{hocolim} R \circ \tilde{Y}$};
  \node (R_Xh) at (-2,0) {$\text{hocolim} R \circ \tilde{X}$};
  \node (P) at (0,1) {$P$};

  \draw[->] (Y) to (Yh);
  \draw[->] (X) to (Xh);
  \draw[->] (Yh) to (P);
  \draw[->] (Yh) to (Y);
  \draw[->] (Xh) to (X);
  \draw[->] (R_Yh) to (R_Xh);
  \draw[->] (R_Yh) to (P);
  \draw[->] (R_Xh) to (P);

  \node (pi) at (1,0) {$\pi$};
  \draw[->] (P) to (pi);
  \draw[->] (Y) to (pi);

  \node (sim) at (0.5,0.5) {$\cong$};
  \node (sim2) at (0.5,1.5) {$\cong$};
\end{tikzpicture}
\end{center}
```

Here $R \circ \tilde{Y} : I \rightarrow \mathcal{S}$ is the composition of the functors \tilde{Y} and $R(_)$ (similarly for $R \circ \tilde{X}$). The lower left square is a homotopy pullback diagram. The upper triangle is a homotopy pushout defining $R_f(Y) \rightarrow$
X. The homotopy fibre of \(R_f(Y) \to X \) over a component of \(X \) is weakly equivalent to any \(R(\sigma^*(Y)) \), \(\sigma \) a simplex of the component.

2. The Universal \(A \)-algebra of an \(A \)-module

Let \(R \) be a commutative field throughout this section.

Denote by \(Mod \) the category of graded (in degrees \(\geq 0 \)) \(R \)-modules. Let \(dMod \) be the category of graded differential modules over \(R \), the differential having degree 1.

Let \(Alg \) be the category of differential commutative associative graded algebras over \(R \) with unit.

For any \(R \)-module \(M \in Mod \) we denote by \(\Lambda(M) \) the free \(R \)-algebra on \(M \). If \(M \in dMod \), then \(\Lambda(M) \) is given the unique algebra differential extending the differential on \(M \).

Given \(A \in Alg \). An \(A \)-module is an object \(M \in dMod \) together with a structure map \(A \otimes_R M \to M \) satisfying the usual properties (comp. [11]).

Definition 1. Let \(A \in Alg \). An \(A \)-algebra is an algebra \(B \in Alg \) together with a morphism (in \(Alg \)) \(j : A \to B \).

Note that an \(A \)-algebra is an \(A \)-module in the obvious way.

Proposition 1. Given an \(A \)-module \(M \), there exists an \(A \)-algebra \(U_M \) and an \(A \)-module map \(\iota : M \to U_M \) such that for any \(A \)-algebra \(B \) and \(A \)-module map \(\alpha : M \to B \) there exists a unique \(A \)-algebra morphism \(a : U_M \to B \) with \(a \circ \iota = \alpha \).

Proof. Denote by \(am \) the image of \(a \otimes m \in A \otimes M \) under the structure map \(A \otimes M \to M \).

Set \(U_M := (A \otimes \Lambda(M))/W \) where \(W \) is the differential ideal generated by \(\{a \otimes m - 1 \otimes am \mid a \in A, m \in M\} \). Define \(\iota : M \to U_M \) by \(\iota(m) := [1 \otimes m] \) (where \([_]\) means coset with respect to \(W \)).

We note that \(U_M \) is an \(A \)-algebra with \(A \to U_M \) given by \(A \to A \otimes \Lambda(X) \to A \otimes \Lambda(X)/W \). The map \(\iota \) is an \(A \)-module map; for given \(a \in A, m \in M \), \(\iota(am) = [1 \otimes am] = [a \otimes m] = a[1 \otimes m] = a\iota(m) \).

To check the universal property is straightforward. \(\square \)
Fibrewise infinite symmetric products and M-category

We shall need a variant of this construction.

Definition 2. An R–module $M \in \text{Mod}$ is pointed, if there is a distinguished element -- which we call 1_M -- in M^0. In case $M \in d\text{Mod}$ we require $d(1_M) = 0$.

An algebra A is always pointed by its unit element 1_A.

Definition 3. Given a pointed R–module M, let $\hat{\Lambda}(M)$ be the algebra $\Lambda(M)/J$ where J is the differential ideal generated by $1 - 1_M$ (the unit element of $\Lambda(M)$).

Remark 1. The functor $\hat{\Lambda}(-)$ is left adjoint to the forgetful from Alg to the category of pointed modules.

The universal construction of Proposition 1 has an obvious analogue in the pointed category. We give the construction as a definition.

Definition 4. Let M be a pointed A–module. Then we set $\hat{U}_M := (A \otimes \hat{\Lambda}(M))/W$ where W is the differential ideal generated by $\{a \otimes [m] - 1 \otimes [am] | a \in A, [m] \text{ coset of } m \in M \text{ in } \hat{\Lambda}(M)\}$.

Definition 5. An A–module M is called semi–free [9], if there exists a free R–module $X = \bigoplus_{i=0}^{\infty} X_i$ (each X_i a graded module) such that $M \cong A \otimes X$ and $d_M(1 \otimes X_i) \subseteq A \otimes (\bigoplus_{j < i} X_j)$, all i.

The semi–free module M is pointed, if it is pointed by an element $1_A \otimes 1_X$ with $1_X \in X_0^0$; the module $X \in \text{Mod}$ is pointed by 1_X.

Proposition 2. Let $M = A \otimes X$ be a semi–free A–module (resp. a pointed semi–free A–module). Then $U_M \cong A \otimes_r \Lambda(X)$ (resp. $\hat{U}_M \cong A \otimes_r \hat{\Lambda}(X)$). (Note: The symbol $(_)_r$ indicates that the differential is twisted; it is the unique algebra differential extending the differential on M).

Proof. We consider only the first case. The A–module map $A \otimes X \to A \otimes_r \Lambda(X)$ induces an A–algebra morphism $U_M \cong (A \otimes \Lambda(A \otimes X))/W \to A \otimes_r \Lambda(X)$ which is surjective. Since any element in $A \otimes \Lambda(A \otimes X)$ is equivalent modulo W to one in the subset $A \otimes_r \Lambda(X)$, this map is also injective. \qed
REMARK 2. Let $M \in d\text{Mod}$ be pointed and augmented, i.e., there is given a module map $c : M \rightarrow R$ with $c(1_M) = 1_R$. Let $\tilde{M} := \ker(c)$. Then $\hat{\Lambda}(M) \cong \Lambda(\tilde{M})$.

COROLLARY. Let $M_B \xrightarrow{\rho} M_B \otimes_r M'$ be a KS-extension modeling the fibration $p : E \rightarrow B$ (as in the Introduction). Then an M_B-module map $r : M_B \otimes_r M' \rightarrow M_B$ with $r \circ \rho^* = \text{id}$ exists, if and only if an algebra map $\rho : M_B \otimes_r \hat{\Lambda}(M') \rightarrow M_B$ with $\rho \circ (\iota \circ \rho^*) = \text{id}$ exists where $\iota : M_B \otimes_r M' \rightarrow M_B \otimes_r \hat{\Lambda}(M')$ is the canonical inclusion.

3. The Main Result

Let $p : E \rightarrow B$ be a fibration of 1-connected rational spaces of finite type over \mathbb{Q}. Let M_B be a Sullivan model of B and let the KS-extension $M_B \rightarrow M_B \otimes_r M'$ model p.

THEOREM. The KS-extension $M_B \rightarrow M_B \otimes_r \hat{\Lambda}(M')$ is a model of the fibration $\mathbb{Q}_f(E) \rightarrow B$.

To give the proof we have to recall a few facts from rational homotopy theory.

Denote by Δ the usual category of standard simplices $\Delta[n]$. For each n let A^n_\bullet be the algebra of polynomial differential forms on $\Delta[n]$ with rational coefficients. The collection A^n_\bullet, $n = 0, 1, 2, \ldots$ constitutes a simplicial object in Alg to be denoted by A^\bullet. We recall that A^\bullet is a cohomology theory in the sense of [3] and that $Z^n(A^\bullet)$ is in a canonical way an Eilenberg–MacLane space $K(\mathbb{Q}, n)$. (Here $Z^n(A^\bullet)$ is the module of cycles of degree n in the differential algebra A^\bullet).

Given $X \in \mathcal{S}$ one defines $A^\bullet(X) := \{f : X \rightarrow A^\bullet \ | \ f \text{ simplicial}\}$; for $M \in \text{Alg}$ we set $\|M\| := \{g : M \rightarrow A^\bullet \ | \ g \text{ differential algebra map}\}$, so that $\|M\|_n := \{g : M \rightarrow A^n_\bullet \ | \ g \text{ map of differential algebras}\}$.

If $M_X \xrightarrow{\kappa} A^\bullet(X)$ is a cofibrant model, then we obtain a simplicial map $X \xrightarrow{\kappa} \|M_X\|$ by $\sigma \mapsto \sigma^* \circ \kappa$, where $\sigma \in X_n$ is viewed as a simplicial map $\sigma : \Delta[n] \rightarrow X$. If X is 1-connected rational of finite type over \mathbb{Q}, this map κ is a weak equivalence (see [1]).

676
Fibrewise infinite symmetric products and M-category

Proposition 3. Let $X \in S$ be 1-connected rational of finite type over Q. Let $M_X \xrightarrow{\kappa} A^*(X)$ be a cofibrant model. Then there is a canonical weak equivalence $Q(X) \to \|\Lambda(M_X)\|$.

Proof. (a) We first find a weak equivalence

$$Q \otimes X \to \|\Lambda(M_X)\|.$$

We look at the following diagram:

\[
\begin{array}{ccc}
\|\Lambda(M_X)\| & \xleftarrow{\bar{\kappa}} & Q \otimes X \\
\|M_X\| & \xleftarrow{\bar{\kappa}} & X.
\end{array}
\]

Observe that $\|\Lambda(M_X)\| = \text{Alg}(\Lambda(M_X), A^*_\ast) = \text{Cochain}(M_X, A^*_\ast)$ is a simplicial abelian group. (Here $\text{Cochain}(_ , _)$ denotes the set of cochain morphisms). Hence there is a unique morphism $\bar{\kappa}$ of simplicial abelian groups making the diagram commute. We want to show that $\bar{\kappa}$ induces isomorphisms of homotopy groups. Recall that $\pi_* (Q \otimes X)$ is canonically identified with $H_*(X, Q)$. On the other hand $\text{Cochain}(M_X, A^*_\ast)$ is weakly equivalent to $\text{Cochain}(\bigoplus_{i \geq 0} H^i(X, Q), A^*_\ast) = \prod_{i \geq 0} \text{Cochain}(H^i(X, Q), Z^i(A^*_\ast))$.

Recall that $Z^i(A^*_\ast)$ is a $K(Q, i)$; therefore $\pi_n(\text{Cochain}(H^i(X, Q), Z^i(A^*_\ast)))$ is canonically isomorphic to $H_i(X, Q)$ for $n = i$ and is zero for $n \neq i$. Moreover, the composition $X \to \|M_X\| \to \|\Lambda(M_X)\|$ identifies $H_*(X, Q)$ with $\pi_* (\|\Lambda(M_X)\|)$. Hence $\bar{\kappa}$ is a weak equivalence.

(b) Choose a base point $* \in X$. Then M_X inherits an augmentation $M_X \to A^*(X) \to A^*(\ast)$; let \bar{M} be the augmentation ideal. We now consider the following diagram:

677
\[
\begin{array}{c}
\text{Alg}(\Lambda(M_X), A^*_\tau) \cong \text{Alg}(\hat{\Lambda}(M_X), A_\tau^*) \leftarrow \leftarrow \quad R(X) \\
\text{Cochain}(M_X, A^*_\tau) \quad \kappa \quad \text{Cochain}(M_X, A^*_\tau) \leftarrow \leftarrow \quad R \otimes X \\
\end{array}
\]

We only need to check that \(\kappa \) induces a map \(R(X) \rightarrow \text{Alg}(\hat{\Lambda}(M_X), A^*_\tau) \).

A linear combination \(\Sigma \lambda_i \sigma_i \) of simplices in \((R \otimes X)_n \) with \(\Sigma \lambda_i = 1 \) is mapped to the element given by \(\Sigma \lambda_i (\sigma_i \circ \kappa) | M_X \) in \(\text{Cochain} (M_X, A^*_\tau) \). Obviously the corresponding algebra map \(\Lambda(M_X) \rightarrow A^*_\tau \) vanishes on the element \((1 - 1_{M_X}) \).

Proof of the Theorem. Let \(Q - S_1 \) be the category of 1-connected rational spaces of finite type over \(Q \). We first choose a functorial cofibrant model construction \(Q - S_1 \rightarrow \text{Alg}, X \mapsto M_X \). For the arrows \(M_X \rightarrow M_Y \) we then choose a functorial \(KS \)-model to be denoted by \(M_X \rightarrow M_X \otimes M_Y \). (We drop the index \(\tau \) reminding that the differential on the tensor product is twisted). These choices are possible according to \([1]\).

Let \(E \rightarrow B \) be a fibration, \(E, B \in Q - S_1 \). As in section 1 let \(I \) be the simplex category of \(B \) and \(\widetilde{B}, \bar{E} \) the corresponding functors.

For an \(n \)-simplex \(\sigma \in B_n \) we denote the \(KS \)-model of \(\sigma^*(E) \rightarrow \Delta[n] \) by \(M_B(\sigma) \rightarrow M_B(\sigma) \otimes M_E(\sigma) \). To perform the fibrewise construction of \(R \) on \(E \rightarrow B \) we may as well perform it on \(\| M_B \otimes M_E(\sigma) \| \rightarrow \| M_B \| \) using the maps \(\| M_B(\sigma) \otimes M_E(\sigma) \| \rightarrow \| M_B(\sigma) \| \) as building blocks. So the essential part of the construction is given by the diagram

\[
\begin{array}{c}
E \quad \cong \quad \| M_B \otimes M_E(\sigma) \| \quad \cong \quad \text{hocolim} \quad \| M_B(\sigma) \otimes M_E(\sigma) \| \quad \cong \quad \text{hocolim} \quad R(\| M_B(\sigma) \otimes M_E(\sigma) \|) \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
B \quad \cong \quad \| M_B \| \quad \cong \quad \text{hocolim} \quad \| M_B(\sigma) \| \quad \cong \quad \text{hocolim} \quad R(\| M_B(\sigma) \|) \\
678
\end{array}
\]
and it suffices to show that the upper row of the following diagram is constituted by weak equivalences:

\[
\begin{array}{ccc}
\| M_B \otimes \hat{A}(M'_E) \| & \xleftarrow{(3)} & \text{hocolim} \| M_B(\sigma) \otimes \hat{A}(M'_E(\sigma)) \| \xrightarrow{(2)} \text{hocolim} \| \hat{A}(M_B(\sigma) \otimes M'_E(\sigma)) \| \\
\downarrow & & \downarrow \\
\| M_B \| & \xrightarrow{\cong} & \text{hocolim} \| M_B(\sigma) \| \xrightarrow{\cong} \text{hocolim} \| \hat{A}(M_B(\sigma)) \| \\
\end{array}
\]

\[
\xrightarrow{\cong} \text{hocolim} R(\| M_B(\sigma) \otimes M'_E(\sigma) \|) \\
\xrightarrow{\cong} \text{hocolim} R(\| M_B(\sigma) \|)
\]

The weak equivalences on the right are provided by Proposition 3. The arrows (1),(2) map the homotopy fibres of the three vertical morphism to the left, \(\| \hat{A}(M'_E) \|, \| M_B(\sigma) \otimes \hat{A}(M'_E(\sigma)) \| \) and \(\| \hat{A}(M_B(\sigma) \otimes M'_E(\sigma)) \|\) resp. by weak equivalences. Hence (1),(2) are weak equivalences as required.

\[\square \]

4. Comments

First we give the definition of the invariant \(M_R\)-cat mentioned in the introduction in more detail.

Definition 6. Let \(R \) be a commutative ring with unit. Let \(X, Y \) be pointed spaces and \(\pi : Y \to X \) a map.

(a) We say that \(\pi \) has an \(M_R \)-section, if \(R_f(\pi', Y') \to X \) has a section (where \(\pi' : Y' \to X \) is the associated fibration).

(b) \(M_R\)-\text{cat} \((\pi) := \inf \{ k \mid G_k(\pi) : G_k(\pi, Y) \to X \text{ has an } M_R\text{-section } \} \).

(c) \(M_R\)-\text{cat} \((B) := M_R\)-\text{cat} \((* \to B) \).

Several facts have to be mentioned:

Warning 1. For fields \(K \) there exists already a notion \(M_K\)-\text{cat} \((B) \) ([12,15]). We do not know whether it coincides with the one given here for \(K \neq Q \).

679
Hans Scheerer and Manfred Stelzer

Warning 2. Let $g : Y \to X$ be a map in $Q - S_1$ with model $M_X \to M_Y$. There is then a notion of category of the M_X-module M_Y [15]. We do not think that it coincides with $M_{Q-\text{cat}}(g)$ in general. But of course this is true for $g : * \to X$.

Warning 3. There is another notion of category of a map which we can transfer into our setting: Let B be pointed and $g : E \to B$ a map. Then define $\bar{M}_{R-\text{cat}}(g) := \inf \{ k \mid g \text{ factors over } R_f(G_k(B)) \to B \}$. For $R = Q$ and g in $Q - S_1$ this invariant coincides with $M_{Q-\text{cat}}(g)$ as studied in [15]. But this may not be true for the corresponding invariant $M_{K-\text{cat}}(g)$ of [15] for $K \neq Q$.

Proposition 4. Let B_1, B_2 be pointed spaces. Then $M_{R-\text{cat}}(B_1 \times B_2) \leq M_{R-\text{cat}}(B_1) + M_{R-\text{cat}}(B_2)$.

Proof. Let $M_{R-\text{cat}}(B_1) \leq k$, $M_{R-\text{cat}}(B_2) \leq \ell$. Then $G_k(B_1) \to B_1$ and $G_\ell(B_2) \to B_2$ have M_R-sections. The next Proposition implies that $G_k(B_1) \times G_\ell(B_2) \to B_1 \times B_2$ has an M_R-section. Hence the statement follows from the existence of a map $G_k(B_1) \times G_\ell(B_2) \to G_{k+\ell}(B_1 \times B_2)$ over $B_1 \times B_2$ (by [14] or [8]).

Proposition 5. Let $E_1 \to B_1$, $E_2 \to B_2$ be fibrations with M_R-sections. Then $E_1 \times E_2 \to B_1 \times B_2$ has an M_R-section.

Proof. Let I_1, I_2 and I be the simplex categories of B_1, B_2 resp. $B_1 \times B_2$. Let the functors $\tilde{B}_1, \tilde{E}_1, \tilde{B}_2, \tilde{E}_2$, $\tilde{B}_1 \times \tilde{B}_2$ and $\tilde{E}_1 \times \tilde{E}_2$ be defined as in Section 1. Note that we have canonical natural transformations $I \to I_1$, $I \to I_2$. Thus we obtain morphisms

$$\hocolim \tilde{E}_1 \times \tilde{E}_2 \to \hocolim \tilde{E}_1 \times \tilde{E}_2 \to (\hocolim \tilde{E}_1) \times (\hocolim \tilde{E}_2)$$

$I \to I_1 \times I_2 \quad I_1 \times I_2 \quad I_1 \quad I_2$

and

$$\hocolim \tilde{B}_1 \times \tilde{B}_2 \to \hocolim \tilde{B}_1 \times \tilde{B}_2 \to (\hocolim \tilde{B}_1) \times (\hocolim \tilde{B}_2)$$

$I \to I_1 \times I_2 \quad I_1 \times I_2 \quad I_1 \quad I_2$.

The two arrows to the right are weak equivalences because of the Fubini Theorem [4], hence the arrows to the left are weak equivalences, because

680
Fibrewise infinite symmetric products and M-category

there are canonical weak equivalences \(\text{hocolim} \widetilde{E}_1 \times \widetilde{E}_2 \simeq E_1 \times E_2 \simeq (\text{hocolim} \widetilde{E}_1) \times (\text{hocolim} \widetilde{E}_2) \) and similarly \(\text{hocolim} B_1 \times B_2 \simeq B_1 \times B_2 \simeq (\text{hocolim} \widetilde{B}_1) \times (\text{hocolim} \widetilde{B}_2) \).

The essential step in the construction of \(R_f(E_1 \times E_2) \to B_1 \times B_2 \) consists in applying the functor \(R(\cdot) \) to the 'building blocks' in a suitable hocolim representation. For these building blocks we now take the collection of arrows given by the natural transformation \(\widetilde{E}_1 \times \widetilde{E}_2 \to \widetilde{B}_1 \times \widetilde{B}_2 \). We are thus lead to the diagram:

\[
\begin{array}{ccc}
\text{hocolim} R \circ (\widetilde{E}_1 \times \widetilde{E}_2) & \xrightarrow{\alpha} & \text{hocolim} (R \circ \widetilde{E}_1) \times (R \circ \widetilde{E}_2) \\
I_1 \times I_2 & \downarrow & \downarrow \\
\text{hocolim} R \circ (\widetilde{B}_1 \times \widetilde{B}_2) & \xleftarrow{\alpha} & \text{hocolim} (R \circ \widetilde{B}_1) \times (R \circ \widetilde{B}_2) \\
I_1 \times I_2
\end{array}
\]

\[
\begin{array}{ccc}
R \circ \widetilde{E}_1 & \xrightarrow{\beta} & \text{hocolim} R \circ \widetilde{E}_2 \\
I_1 & \downarrow & \downarrow \\
R \circ \widetilde{B}_1 & \xleftarrow{\beta} & \text{hocolim} R \circ \widetilde{B}_2 \\
I_1
\end{array}
\]

Remark 3. Why do we not have the corresponding result of Proposition 4 for maps? In fact, there is a result, but it is more complicated.

Suppose that \(p_1: E_1 \to B_1, p_2: E_2 \to B_2 \) have \(M_{R-\text{cat}}(p_1) \leq k \) resp. \(M_{R-\text{cat}}(p_2) \leq \ell \). Suppose that \(\text{cat}(E_1), \text{cat}(E_2) \) are finite. Then there is a map [8] from \(G_k(p_1) \times G_\ell(p_2) \) towards \(G_{n(k,\ell)}(p_1 \times p_2) \) over \(B_1 \times B_2 \), where \(n(k,\ell) = k + \ell + \max\{ \text{cat}(E_1), \text{cat}(E_2) \} \). Therefore we only obtain \(M_{R-\text{cat}}(p_1 \times p_2) \leq M_{R-\text{cat}}(p_1) + M_{R-\text{cat}}(p_2) + \max\{ \text{cat}(E_1), \text{cat}(E_2) \} \).

Remark 4. The constructions of this section can similarly be done for any coaugmented functor \(T: S \to S \) that admits a fibrewise version
and a natural transformation $T(X) \times T(Y) \to T(X \times Y)$, $X, Y \in \mathcal{S}$, compatible with the coaugmentations.

References

Mathematisches Institut, Freie Universität Berlin, Arnimallee 1–3, 14195 Berlin, Germany
E-mail: scheerer@math.fu-berlin.de

682