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FIBREWISE INFINITE SYMMETRIC PRODUCTS
AND M-CATEGORY

HANS SCHEERER AND MANFRED STELZER

ABSTRACT. Using a base—point free version of the infinite symmet-
ric product we define a fibrewise infinite symmetric product for any
fibration E -+ B. The construction works for any commutative
ring R with unit and is denoted by Ry(E) — B. For any pointed
space B let G;(B) — B be the i-th Ganea fibration. Defining Mp-
cat (B) := inf{i | R;(G;(B)) — B admits a section} we obtain an

. approximation to the Lusternik—Schnirelmann category of B which
satisfies e.g. a product formula. In particular, if B is a 1-connected
rational space of finite rational type, then Mg—cat (B} coincides with
the well-known (purely algebraically defined) M—category of B which
in fact is equal to cat (B) by a result of K. Hess. All the constructions
more generally apply to the Ganea category of maps.

0. Introduction

Let S be the category of simplicial sets. It carries the structure of a
closed model category where the weak equivalences are the maps which
turn into homotopy equivalences by realization and where the cofibra-
tions are the injective maps [16]. Any map Y — X factors as a weak
equivalence followed by a fibration which we call ‘the’ associated fibra-
tion.

We recall the Ganea construction [10]. Given a map p:Y — X with
X pointed by * we let Go(p) : Go(p,Y) — X be the associated fibration,;
suppose the fibration G;(p) : G;(p,Y) — X with fibre F; is defined, 1 > 0,
then let G.,(p,Y) — X be the map 7:Gi(p,Y) Up, C(F;) — X where

C(F;) is the cone on F; and 7 | Gi(p,Y) = Gi(p),n | C(F;) = * and
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define G;y1(p): Gis1(p,Y) — X as the associated fibration. Recall that
cat (X) := inf{i | G;(* — X) admits a section }. In this absolute case
we write G;(X) — X for the fibration G;(x — X).

Let now p: E — B be a map of 1-connected rational spaces of finite

type over Q. Let Mgz be a Sullivan model of B and Mz-> M ®, M' a
K S—extension modeling p (the index 7 should remind that the differential
on the tensor product is twisted).

We say that p has an M-section, if there is an Mp-module map
T:Mp ®, M' — Mg with r o p* = id. Define M—cat (p) := inf{i | G;(p)
admits an M-section }. In particular, M—cat(B) := M-cat (* — B)
has been introduced in [12] as an algebraic approximation to cat (B).
According to [13] one has M—cat (B) = cat (B).

Let R be a non-trivial commutative ring with unit. For X € S let
R ® X be the free module generated by X and let R(X) C R® X be
the affine subspace consisting of linear combinations of simplices with
coefficient sum 1. If R = Z, then R(X) is a basepoint free version of the
infinite symmetric product on X (see [2]). Given a fibration Y — X in
S there is a fibrewise version of R(—) denoted by R;(Y) — X according
to [7].

Our main result says that M~cat (p) < k, if and only if Q¢(Gk(p, E)) —
B admits a section.

By [13] this implies that for B a simply connected rational space of fi-
nite rational type G (B) — B admits a section if and only if Q;(Gx(B)) —
B admits one.

Thus for any R as above, any map ¢g:Y — X we may define an
invariant Mgp-cat (g) := inf{i | Rf(Gi(9,Y)) — X admits a section }. In
section 4 we will comment this notion and prove e.g. a product formula.

In section 1 we recall the construction of R¢(Y) — X. In section
2 we study an algebraic construction serving as a bridge to the spatial
construction (over Q). In section 3 we prove the main result.

We would like to thank W. Chachélski, E. Dror Farjoun and J. Scherer
for answering our questions about homotopy colimits, and D. Stanley for
many discussions on the subject of this paper.
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1. Construction of R(Y) — X

Let R be a non—trivial commutative ring with unit 1. For X € S let
R ® X be the free module generated by X; in particular, R® X is a
simplicial abelian group. According to [2] we consider R(X) C R® X,
(R(X))y = {2 Nz | 7 € X, DN = 1, \; # O for only finitely many
indices 1}. Given a base point * € X the composition R(X) - R® X —
R® X/R ® * is a weak equivalence. (Moreover R(X) can be identified
with kernel (R® X — R® x)).

There is a natural map X — R(X), z — 1z, hence R(_) is a coaug-
mented functor § — § in the sense of [7]. It takes weak equivalences
to weak equivalences and its value on a point space is the point space.
Therefore there is a fibrewise version of the functor by [7]. We recall its
definition: .

Let #:Y — X be a fibration. Denote by I the simplex category of
X [4]; its objects are the simplices o: A[n] — X (A[n] the standard
n-simplex), the morphisms (A[n],0) — (A]m], 7) are the order preserv-
ing maps a:A[n] — Ajm] with a*(7) = 6. Let X denote the functor
I — &S given on objects by X((A[n],0)) = An); let Y:I — S be the
functor with Y ((A[n],0)) := o*(Y), the pullback of ¥ — X by 0. We
then have canonical weak equivalences hocolim X -—-—--)COth =X and
hocolim Y=, colim¥y -2,Y. -

We now form the following diagram:

hocolim Y

N
I

hocolim X

hocolim Ro Y

hocolim R o X

" Here RoY: T — S is the composition of the functors Y and R(_)
(similarly for R o X). The lower left square is a homotopy pullback
diagram. The upper triangle is a homotopy pushout defining R¢(Y) —
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X. The homotopy fibre of R¢(Y) — X over a component of X is weakly
equivalent to any R(c*(Y')), o a simplex of the component.

2. The Universal A-algebra of an A—-module

Let R be a commutative field throughout this section.

Denote by Mod the category of graded (in degrees > 0) R—modules.
Let d Mod be the category of graded differential modules over R, the
differential having degree 1.

Let Alg be the category of differential commutative associative graded
algebras over R with unit.

For any R-module M € Mod we denote by A(M) the free R—-algebra
on M. If M € d Mod, then A(M) is given the unique algebra differential
extending the differential on M.

Given A € Alg. An A-module is an object M € d Mod together with
a structure map A ® g M — M satisfying the usual properties (comp.

[11]).

DEFINITION 1. Let A € Alg. An A-algebra is an algebra B € Alg
together with a morphism (in Alg) j: A — B.
Note that an A-algebra is an A-module in the obvious way.

PROPOSITION 1. Given an A-module M, there exists an A—algebra
Uy and an A-module map ¢: M — Uy such that for any A-algebra B
and A-module map a: M — B there exists a unique A-algebra mor-
phism a: Uy — B withaoi = a.

Proof. Denote by am the image of a® m € A® M under the structure
map AQM — M.

Set Uy := (A® A(M))/W where W is the differential ideal generated
by {a®@m—-1®am | a € Aym € M}. Define .: M — Uy by t(m) =
[1 ® m] (where [_] means coset with respect to W).

We note that Uy is an A-algebra with A — Uy given by A — A®
A(X) — A®A(X)/W. The map ¢ is an A-module map; for given a € A,
m € M, tlam) = [1 ® am| = [a ® m] = a[l ® m] = ac(m).

To check the universal property is straightforward. O
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| ‘We shall need a variant of this construction.

DEFINITION 2.  An R-module M € Mod is pointed, if there is a
distinguished element — which we call 1y — in M 0 In case M € dMod
we require d(1y) =

An algebra A is always pointed by its unit element 1,.

DEFINITION 3. Given a pointed R-module M, let A(M) be the
algebra A(M)/J where J is the differential ideal generated by 1 -1y (1
the unit element of A(M)).

REMARK 1. The functor [\(_) is left adjoint to the forgetful from Alg '
to the category of pointed modules.

The universal construction of Proposition 1 has an obvious analogue
in the pointed category. We give the construction as a definition.

DEFINITION 4. Let M be a pointed A-module. Then we set Uy =
(A® A(M))/W where W is the differential ideal generated by {a® [m]
1®[am]|a€ A, m m) coset of m € M in A(M)}. |

DEFINITION 5. An A—module M is called semi—free [9], if there
exists a free R—module X = @ X; (each X; a graded module) such that
M=AQ®X and dM(1®X)CA® @X) all 4.

The semi—free module M is pomted if it is pointed by an element
14 ® 1x with 1x € X§; the module X € Mod is pointed by 1x.

PROPOSITION 2. Let M = A® X be a semi-free A-module (res.
a pointed semi-free A-module). Then Uy = A ®, A(X) (resp. Uy =
A ®; A(X)). (Note: The symbol (_), indicates that the differential is
twisted; it is the unique algebra differential extending the differential on
M)

Proof. We consider only the first case. The A-module map A® X —
A®, A(X) induces an A-algebra morphism Uy & (AQ@A(AQ® X))/W —
A ®; A(X) which is surjective. Since any element in A ® A(A® X) is
equivalent modulo W to one in the subset A ®, A(X), this map is also

" injective. O
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REMARK 2. Let M € dMod be pointed and augmented, i.e., there is
given a module map c: M — R with ¢(1y) = 1g. Let M := kernel(c).
Then A(M) = A(M).

COROLLARY. Let Mz-P .M, 5 ®; M' be a KS—-extension modeling the
fibration p: E — B (as in the Introduction). Then an Mp—module map.
T: Mp®, M' — Mp withrop* = id exists, if and only if an algebra map

~

p:Mp®,;A(M') — Mg with po(1op*) = id exists where t: Mp®, M’ —

~

Mg ®; A(M') is the canonical inclusion.

3. The Main Result

Let p: E — B be a fibration of 1-connected rational spaces of finite
type over Q. Let Mp be a Sullivan model of B and let the K S—extension
Mp — Mg ®, M’ model p.

THEOREM. The K S-extension Mg — Mp®, [\(M ") is a model of the
fibration Q¢(E) — B.

To give the proof we have to recall a few facts from rational homotopy
theory.

Denote by A the usual category of standard simplices A[n]. For each
n let A} be the algebra of polynomial differential forms on A[n] with
rational coefficients. The collection A%, n = 0,1,2,... constitutes a
simplicial object in Alg to be denoted by A:. We recall that A: is a
cohomology theory in the sense of [3] and that Z"(A}) is in a canonical
way an Eilenberg-Maclane space K(Q,n). (Here Z"(A}) is the module
of cycles of degree n in the differential algebra Aj).

Given X € S one defines A*(X) := {f: X — A} | f simplicial}; for
M € Alg we set |[M| := {g: M — A | g differential algebra map}, so
that |[M||, := {9: M — A} | g map of differential algebras}.

If Mx=,A*(X) is a cofibrant model, then we obtain a simplicial map
X E,||[Mx|| by o — o* o k, where 0 € X, is viewed as a simplicial map
o:Aln] — X. If X is 1-connected rational of finite type over Q, this
map R is a weak equivalence (see [1]).
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PROPOSITION 3. Let X € S be 1-connected rational of finite type over
Q. Let Mx-%,A*(X) be a cofibrant model. Then there is a canonical

weak equivalence Q(X) — ||A(Mxy)].

Proof. (a) We first find a weak equivalence
Q® X — |A(Mx)||.

We look at the following diagram:

MOl —F-- QeX

[l Mx|l

Observe that ||A(Mx)|| = Alg(A(Mx), A%) = Cochain(Mx, A%) is a
simplicial abelian group. (Here Cochain(—, ~) denotes the set of cochain
morphisms). Hence there is a unique morphism % of simplicial abelian
groups making the diagram commute. We want to show that ¥ induces
isomorphisms of homotopy groups. Recall that 7,(Q ® X) is canonically
identified with H,(X, Q). On the other hand Cochain(Mx, A}) is weakly
equivalent to Cochain(€) HY(X,Q), A%) H Cochain(H(X,Q), Z*(A})).

>0
Recall that Z'( A?) is a K(Q, 7); therefore Wn(Cocham(HZ(X Q), ZHAL)))
is canonically isomorphic to H;(X,Q) for n = i and is zero for n # 4.
Moreover, the composition X — ||Mx| — ||[A(Mx)|| identifies H,(X, Q)
with 7, (JJA(Mx)||). Hence & is a weak equivalence.

(b) Choose a base point * € X. Then My inherits an augmentation
My — A*(X) — A*(x); let Mx be the augmentation ideal. We now
consider the following diagram:
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Alg(A(Mx), A) = Alg(A(Mx), A}) —--—- R(X)

A(
| |
Cochain(My, A?)

| |

R®X/R@x* - -

=l

R

oy
&®
b
12

Cochain(M, A%)

We only need to check that % induces a map R(X) — Alg(A(My), AY).

A linear combination ¥ );0; of simplices in (R ® X), with ¥A; = 1 is
mapped to the element given by L\;(0} o k) | Mx in Cochain (Mx, A}).
Obviously the corresponding algebra map A(My) — A} vanishes on the
element (1 — 1y, ). O

Proof of the Theorem. Let Q — S; be the category of 1-connected
rational spaces of finite type over . We first choose a functorial cofibrant
model construction Q — S; — Alg, X — M. For the arrows Mx — My
we then choose a functorial KS-model to be denoted by Mx — Mx ®
Mj,. (We drop the index 7 reminding that the differential on the tensor
product is twisted). These choices are possible according to [1].

Let E — B be a fibration, E, B € Q — ;. As in section 1 let I be
the simplex category of B and B, E the corresponding functors.

For an n-simplex o € B, we denote the K S—model of 0*(E) — A[n]
by Mg(c) — Mg(o) ® Mg(o). To perform the fibrewise construction
of R on E — B we may as well perform it on |Mp ® Mg| — ||M3]|
using the maps |Mg(c) ® My(o)|| — ||Mg(c)| as building blocks. So
the essential part of the construction is given by the diagram

E = |MpeM]| «— hocolim [Mp(c)®Mpy(o)ll — hocolim R(|Mp(c)@M (o))

| | l l

B =, Mgl «— hocolim [Mp(c)| —  hocolim R(|[Mg(@)|l)
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and it suffices to show that the upper row of the following diagram is
constituted by weak equivalences:

IMp@AMY)]| 2 hocolim |Mp(0)@AML(o)] D bocolim IA(Mp (o) oML (0))]

l l l

Mgl = hocolim [|(Mp(c)] ~Z 5 hocolim |A(Mg(o))} Ml

= hocolim R(|Mp(c)@Ml(a)[))

«= hocolim R(||Mz(o)}))

The weak equivalences on the right are provided by Proposition 3. The
arrows (1),(2) map the homotopy fibres of the three vertical morphism
to the left, [A(Mg)|, ||Mp(o) ® A(Mp(0))l| and |A(Mp(0) ® M(o))ll
resp. by weak equivalences. Hence (1),(2) are weak equivalences as
required. ]

4. Comments

First we give the definition of the invariant Mp—cat mentioned in the
introduction in more detail.

DEFINITION 6. Let R be a commutative ring with unit. Let X,Y be
pointed spaces and 7:Y — X a map.

a) We say that 7 has an Mg—section, if Rs(n', Y’} — X has a section
f
(where 7' :Y" — X is the associated fibration).
(b) Mp~cat () := inf{k | Gi(m): G(7,Y) — X has an Mp-section }.
(c) Mp—cat(B) := Mg—cat (x — B).

Several facts have to be mentioned:

WARNING 1. For fields K there exists already a notion My—cat (B)
([12,15]). We do not know whether it coincides with the one given here

for K # Q.
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WARNING 2. Let g:Y — X be a map in Q — S; with model My —
My . There is then a notion of category of the Mx-module My [15]. We
do not think that it coincides with Mg—cat (g) in general. But of course
this is true for g:x — X.

WARNING 3. There is another notion of category of a map which we
can transfer into our setting: Let B be pointed and g: E — B a map.
Then define Mg—cat(g) := inf{k | g factors over R;(Gx(B)) — B}.
For R = Q and g in Q — S, this invariant coincides with Mg—cat (g) as
studied in [15]. But this may not be true for the corresponding invariant
Mjc—cat (g) of [15] for K # Q.

PROPOSITION 4. Let By, B, be pointed spaces. Then Mg—cat (B; X
By) < Mg~cat (B:) + Mg—cat (By).

Proof. Let Mp—cat (B;) < k, Mg—cat (By) < £. Then Gi(B;) — B
and G¢(By) — B, have Mp—sections. The next Proposition implies that
Gi(B1) x G¢(B3) — B; x By has an Mg-section. Hence the statement

follows from the existence of a map Gi(B;) X G¢(Bg) — Gyie(By X By)
over B} x B (by [14] or [8]). a

ProposITION 5. Let E; — B,, Fy — B, be fibrations with Mgp—-
sections. Then E; x Fy — B, x By has an Mpg-section.

Proof. Let Iy, Is and I be the simplex categories of B, B, resp. By X Bs.

Let the functors EI,EI,EZ, Ez, B; x By and E; x Ey be defined as in
Section 1. Note that we have canonical natural transformations I — I,
I — I;. Thus we obtain morphisms

hocolim ET;-EQ — hocolim E; x By — (hocolim El) x (hocolim Eg)
I I 1 X IQ I 1 12

and

hocolim BT\X—BQ — hocolim By x By — (hocolim B,) x (hocolim B,)
I Il X IQ Il I2 .

The two arrows to the right are weak equivalences because of the Fubini
Theorem [4], hence the arrows to the left are weak equivalences, because
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there are canonical weak equivalences (hocolim Emz) ~ By x Ey =~
(hocolim E:;) x (hocolim EQN) and similarly (hocolim By x By) =~ By x By =~
(hocolim Bj;) x (hocolim Bj).

The essential step in the construction of Ry(E; x Ey) — By X B con-
sists in applying the functor R(—) to the ‘building blocks’ in a suitable
hocolim representation. For these building blocks we now take the col-
lection of arrows given by the natural transformation E1 X Ez — 31 x Bg
We are thus lead to the diagram:

hocolim Ro (Ey x Ey) —%— hocolim (Ro Ey) x (Ro By) —Z2—

Il X Iz Il X 12
hocolim Ro{B; x BQ)  #— hocolim (Ro B1) x (Ro §2) L,
I1 X Ig Il X I
—-§——> hocolim Ro E; x hocolim Ro E,
L I,

——Z——» hocolim Ro El x hocolim Ro B,
Il . 12

REMARK 3. Why do we not have the corresponding result of Propo-
sition 4 for maps? In fact, there is a result, but it is more complicated.

Suppose that p,: By — By, pa: E; — By have Mpr—cat (p1) < k.resp.
Mp—cat(py) < £. Suppose that cat(FE;), cat(E;) are finite. Then
there is a map [8] from Gi(p1) x Ge(pe) towards Gypg(pr X p2) over
By x By, where n(k,f) = k + £ + max{ cat (Fy), cat (E;)}. There-
fore we only obtain Mpg~cat (p; x p2) < Mp—cat(p;) + Mg—cat (p;) +
max{ cat (E), cat(E)}.

REMARK 4. The constructions of this section can similarly be done
for any coaugmented functor 7:S — S that admits a fibrewise version
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and a natural transformation T(X) x T(Y) — T(X x Y), X,Y € S,
compatible with the coaugmentations.
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