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AN EMBEDDED 2-SPHERE IN
IRREDUCIBLE 4-MANIFOLDS

JONGIL PARK

ABSTRACT. It has long been a question which homology class is rep-
resented by an embedded 2-sphere in a smooth 4-manifold. In this
article we study the adjunction inequality, one of main results of
Seiberg-Witten theory in smooth 4-manifolds, for an embedded 2-
sphere. As a result, we give a criterion which homology class cannot
be represented by an embedded 2-sphere in some cases.

1. Introduction

As gauge theory, in particular Seiberg-Witten theory, has revealed
many remarkable facts in smooth 4-manifolds, it has also a powerful
application in studying smoothly embedded surfaces in a smooth 4-
manifold. For example, as a generalization of adjunction formula in
complex geometry, one gets-a similar formula in a smooth 4-manifold,
called adjunction inequality. As we see in section 3, the adjunction in-
equality is a powerful tool to study the minimal genus of an embedded
surface representing the same homology class in a smooth 4-manifold
with non-trivial SW-basic classes and it also tells us an upper bound of
intersection numbers .of a given homology class with SW-basic classes.
But the adjunction inequality is not known for a smoothly embedded
2-sphere. Hence “In which smooth 4-manifolds does the adjunction in-
equality hold for embedded 2-spheres?” is an interesting question. We
are going to answer for this question in some cases. That is, if X is a
minimal symplectic 4-manifold or a spin smooth 4-manifold having one
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SW-basic class with b5 > 1, we prove that the adjunction inequality on
X is still true for an embedded 2-sphere. Explicitly

THEOREM 1.1. Suppose X is a minimal symplectic 4-manifold by > 1,
or a spin smooth 4-manifold with one SW-basic class and by > 1. Then
any homologically non-trivial, smoothly embedded 2-sphere S in X sat-
isfies the adjunction inequality:

-2 > [S]-[S]+ |Kx - [S]|
where Kx is a canonical class or SW-basic class of X.

Furthermore, as a corollary of Theorem 1.1 above, we get a criterion
that if X is a minimal symplectic 4-manifold b5 > 1 or a spin smooth
4-manifold with one SW-basic class and b > 1, then any non-trivial
homology class o € Hy(X : Z) satisfying - a + [a - Kx| > 0 cannot be
represented by a smoothly embedded 2-sphere.

2. Seiberg-Witten equations

In this section we briefly review the basics of Seiberg-Witten equations
introduced by N. Seiberg and E. Witten (cf. [11], [5]).

Let X be an oriented, closed Riemannian 4-manifold, and let L be a
characteristic line bundle on X, i.e., c;(L) is an integral lift of wy(X).
This determines a Spin‘-structure on X which induces a unique complex
spinor bundle W = W+ @W -, where W# is the associated U(2)-bundles
on X. Then W* = §% @ L'/? and det(W*) = L, where S* is a (locally
defined) spinor bundle on X. For simplicity we assume that H {(X;2)
has no 2-torsion so that the set Spin®(X) of Spin‘-structures on X is
identified with the set of characteristic line bundles on X.

Note that the Levi-Civita connection on T'X together with a unitary
connection A on L induces a connection V4 : (W) - T(T*X @ WT).
This connection, followed by Clifford multiplication, induces a Spin®-
Dirac operator Dy : [(W*) — ['(W~). The Seiberg-Witten equations
are the following pair of equations for a unitary connection A on L and
a section ¥ of (W ™):

Do = 0
® { o(FD) = i(¥® )
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where F} is the self-dual part of the curvature of A and (¥ ® ¥*), is the
trace-free part of (¥ ® ¥*) interpreted as an endomorphism of W+,

The gauge group G = Aut(L) = Map(X,S!) acts on the space
Ax (L) x (W) by . ~

g-(A,¥)=(g0oAog™g-¥).

Since the set of solutions is invariant under the action, it induces an
orbit space, called the (Seiberg- Witten) moduli space, denoted by Mx (L),
whose formal dimension is

dimMy (L) = E(CI(LV ~ 30(X) — 2¢(X))

where 0(X) is the signature of X and e(X) is the Euler characteristic of
X. Note that if b%(X) > 0 and Mx(L) # ¢, then for a generic metric
on X the moduli space Mx (L) contains no reducible solutions, so that it
is a compact, smooth manifold of the given dimension. Furthermore the
moduli space Mx(L) is orientable and its orientation is determined by a
choice of orientation on det(H°(X;R) ® HY(X;R) ® H2(X; R)).

DEFINITION. The Seiberg- Witten invariant for a smooth 4-manifold
X is a function SWy : Spin®(X) — Z defined by

0 if dimMx(L) <0 or odd
SWy(L) = > “sign(A,¥) if dimMx(L) =0

(A W)eMx (L)

( B%,[Mx(L)]) if dimMx(L):=2d; >0 and even.

Here sign(A,¥) is £1 determined by an orientation on Mx(L), and
B € H*(Mx(L); Z) is the first chern class of the U(1)-bundle

M\;(L) = {solutions(A, ¥)}/Aut®(L) — Mx (L)

where Aut®(L) consists of gauge transformations which are the identity
on the fiber of L over a fixed basepoint in X. For convenience, we denote
the Seiberg-Witten invariant for X by SWx = 3, SWx(L) - €.

DEFINITION. Let X be an oriented, closed smooth 4-manifold with

b > 1. We say a cohomology class ¢;(L) € H*(X; Z) is a Seiberg- Witten
basic class (for brevity, SW-basic class) for X if SWx(L) # 0.
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It turns out that the Seiberg-Witten theory has many powerful appli-
cations to smooth 4-manifolds. For example, if b5 (X) > 1, the Seiberg-
Witten invariant SWy = > SWy(L) - e is a diffeomorphism invariant,
i.e., SWx does not depend on the choice of generic metric on X and
generic perturbation of the Seiberg-Witten equation. Furthermore, only
finitely many Spin‘-structures on X have a non-zero Seiberg-Witten in-
variant. It also measures to some extent whether a given smooth 4-
manifold is irreducible or not. That is, since the Seiberg-Witten invari-
ant for a connected sum manifold X = X §X, with b5 (X;) > 0 (:=1,2)
is identically zero, SWx # 0 implies that X is irreducible unless X is
homeomorphic to a blow-up manifold. Note that a smooth 4-manifold
X is called irreducible if X is not a connected sum of other manifolds
except for a homotopy sphere.

-3. Adjunction inequality for embedded 2-spheres

In this section we investigate the adjunction inequality for an embed-
ded 2-sphere in some irreducible 4-manifolds. The adjunction inequality
which is originated from Thom conjecture, the complex curves in CP?
minimize the genus in their homology class, was obtained initially by
Kronheimer and Mrowka’s hard work in Donaldson theory ([4]), and
later it was proved by an easy argument using Seiberg-Witten theory.
As we see below, the adjunction inequality is a powerful tool to study
the minimal genus of an embedded surface representing the same ho-
mology class in a smooth 4-manifold with non-trivial SW-basic classes
and it also tells us an upper bound of intersection numbers of a given
homology class with SW-basic classes. But the adjunction inequality is
not known for a smoothly embedded 2-sphere (See also below). In this
section we prove that if X is a minimal symplectic 4-manifold or a spin
smooth 4-manifold having one SW-basic class with b7 > 1, then X sat-
isfies the adjunction inequality for an embedded 2-sphere. Furthermore
we give a criterion that some homology classes in such 4-manifolds can
not be represented by a smoothly embedded 2-sphere. First we state the
adjunction inequality:

THEOREM 3.1 (Adjunction inequality [1], [5]). Suppose X is a smooth
4-manifold with b > 1 and SWx # 0. If ¥ is a smoothly embedded,
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oriented surface in X representing non-trivial homology class {¥] with
[Z] - [Z] = 0, then for any SW-basic class Kx of X

2 genus(X) — 2 > [¥]- 5]+ |Kx - 3]

REMARKS. 1. Fintushel and Stern obtained a similar adjunction in-
equality for an immersed 2-sphere ([2]), and recently Ozsvath and Szabd
extended the same adjunction inequality to the embedded surfaces with
genus > 0 and a negative self-intersection number in case X is a SW-
simple type ([6]).

2. This induces the genus minimizing problem of embedded surfaces
representing the same homology class in a smooth 4-manifold, i.e.,

o] - (2] + | Kx - [3]]
2

Note that if X is a complex surface (a symplectic 4-manifold), then the
minimal genus of an embedded surface is obtained by a complex curve
(a symplectic curve).

3. An immediate corollary of the adjunction inequality above is that any
smoothly embedded 2-sphere representing non-trivial homology class in a
smooth 4-manifold with b5 > 1 and SWx # 0 should have a negative self-
intersection number. But, as we noticed that the adjunction inequality
above is true only for an embedded 2-sphere with a non-negative self-
intersection number, Theorem 3.1 above and Ozsvath and Szabd’s recent
result do not say anything for an embedded 2-sphere.

genus(X) > 1+ {

Now let us try to prove our main result by using a fundamental propo-
sition proved by Fintushel and Stern.

PRrOPOSITION 3.1 ([2]). Suppose X is a smooth 4:manifold with an
embedded 2-sphere S with self-intersection —r < 0. Let L be a charac—
teristic line bundle with SWx (L) # 0 and write

|S-Li=kr+R, with 0<R<r-1.

If k > 0, then
[ SWx(L+25) if L-S>0
SWX(L)—{ SWy(L—25) if L-8<0.
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REMARK. Proposition 3.1 above can be also proved by computing
dimensions of related moduli spaces of SW-equations, of which argument
is appeared in the author’s thesis ([7]).

THEOREM 3.2. Suppose X is a spin, smooth 4-manifold with one SW-
basic class Kx and by > 1. Then any homologically non-trivial, smoothly
embedded 2-sphere S in X satisfies the adjunction inequality:

-2 2 [5]-[S] + |Kx - [S]] -

Proof. Suppose that S is a homologically non-trivial, smoothly em-

bedded 2-sphere in X such that
[S]- [S]+ [Kx - [S]| =2 0.
Then by Proposition 3.1 above, we have
N SWX(Kx+2[S]) if Kx[S] >0
SWx(Kx) = { SW(Kx —2[S]) if Kx-[S]<0.
Since X has (up to sign) one SW-basic class and [S] # 0,
—Kx =Kx + 2[5] (OI‘ — Ky =Ky — 2[5])
holds, so that Kx = %[S] and [S] - [S] + |Kx - [S]| = 0. Hence the
Poincare dual PD([S]) of an embedded 2-sphere S is a SW-basic class.
Now decompose and stretch the manifold X along a boundary of a tubu-
lar neighborhood Ng of S so that X = XoUg Ns. Then since the bound-
ary, which is a lens space L, and a tubular neighborhood of S admit a
positive scalar curvature metric, only a reducible SW-solution exists on
the neck L x R and on the tubular neighborhood Ns. Hence the SW-
invariants of the manifold depend only on the other side X,. That is,
SWX(K)() = SWXO(KXIXO)' But KX|X0 = 0|Xo and 0 € H2(X : Z) is
also a characteristic class (X is spin). Hence we have
SWx(Kx) = SWx,(Kx|x,) = SWx,(0lx,) = SWx(0)
contradicting a hypothesis that X has one SW-basic class. Thus if S is
a smoothly embedded 2-sphere with [S] # 0 in X, then it satisfies
0> [S]-[S]+|Kx - [S] .
Furthermore, since Kx is a characteristic class in Hy(X : Z), [S]-[S]+
|Kx - [S]] is even, so that the adjunction inequality holds
—2 = [5]-[S]+ |Kx - [S]] - U
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Note that the set of all irreducible 4-manifolds with one SW-basic class
is quite a large class of smooth 4-manifolds. For example, every simply
connected minimal complex surface of general type with b > 1 is an
irreducible 4-manifold with one SW-basic class ([11]), and there are also
infinitely many irreducible 4-manifolds with one SW-basic class which
cannot admit a complex structure in any orientation ([3], [7], [8]). In
fact, by using the same technique as in the proof above, we can extend
this result to minimal symplectic 4-manifolds. Explicitly,

THEOREM 3.3. Suppose X is a minimal symplectic 4-manifold with
a canonical class Kx and b > 1. Then any homologically non-trivial,
smoothly embedded 2-sphere S in X satisfies the adjunction inequality:

-2 > [9]-[8] + |Kx - 9] -

Proof. Since a minimal symplectic 4-manifold X with b > 1 is SW-
simple type and the class K3 of X is also a SW-basic class ([9]), if
[S] - [S] + |Kx! - [S)} = [S]- [S] + |Kx - [S]| > O, Proposition 3.1 above
implies that

i [ SWx(Kz'+2[S) if Kx'-[S]>0
SWx(Kx') ’{ SWy(K<! —2/8]) it Ky'-[S)<0.

But
dim My(K3! +2[S]) = i[(K)‘(li2[S])2—(2e(X)+30(X))]

= dim Mx(K3') + ([S]-[S]+ Kx - [S])
> 0

which contradicts that X is SW-simple type. Hence [S]-{S]+|Kx-[S]| <
0. If [S] - [S] + |Kx - [S}| = 0, as in the proof of Theorem 3.2 above,
there are two possibilities: either Kx = %[S] or a new SW-basic class
K3 £ 2[S]. But since the canonical class Kx of a minimal symplectic
4-manifold with b > 1 has a non-negative square, we get a contradiction
0 < Kx-Kx = [S]-[S] < 0. Furthermore, since SW (K" +2F) = Gr(E)
and E - E > 0 for a minimal symplectic manifold with 7 > 1 ({10]),
Ki' £+ 2[S] cannot be a SW-basic class of X, either. Hence we have

0> [S]-[S]+ |Kx - [S]]
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so that the adjunction inequality holds
=2 > [S]-[S]+ [Kx - [S]] - O

COROLLARY 3.1. Suppose X is a closed, smooth 4-manifold with
by > 1 which satisfies (Kx — K )? > —4, for all SW-basic classes Kx, K}
of X. Then any homologically non-trivial, smoothly embedded 2-sphere
S in X satisfies the adjunction inequality:

=2 > [5]-[S]+ |Kx - [S]] -

Proof. If [S] - [S] + |Kx - [S]| > 0, then by the same way as in the
proof above both Ky and Kx % 2[S] are SW-basic classes of X. But
(Kx — (Kx £2[5]))*> = 4[S] - [S] < —4 contradicts the hypothesis of
X. O

COROLLARY 3.2. Suppose X is a minimal symplectic 4-manifold
by >1, or a spin smooth 4-manifold with one SW-basic class and b} > 1.
Then any non-trivial homology class a € Hy(X : Z) satisfying a-a+ |a-
Kx| > 0 cannot be represented by a smoothly embedded 2-sphere.

EXAMPLE. Let E(n) be a simply connected elliptic surface with
holomorphic Euler characteristic n and no multiple fibers. The intersec-
tion form of E(n) is

_J (@2n-1)1Q)® (10n - 1)(=1), n=odd
Qe = nEs @ (2n — 1)H, n = even

where Fjg is the rank 8 negative definite intersection form obtained by
the Dynkin diagram of Eg and H is the intersection form of S? x 52, and
the canonical class of E(n) is Kg(,) = (n—2)f, where f is a generic fiber
which is represented by one of two generators in H. Then any element
of the form o + § € Hy(E(n) : Z), where o and 8 are homology classes
lying in nEg and (2n — 1) H respectively such that o® + (n —2)|f- 38| > 0
and #* = 0, cannot be represented by a smoothly embedded 2-sphere.
Note that all such classes have negative self-intersection numbers.

We close this paper by suggesting the following question:

QUESTION. Is the adjunction inequality still true in general for an
embedded 2-sphere in any irreducible 4-manifold?
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