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ANOTHER CHARACTERIZATION
OF ROUND SPHERES

SEUNG-WON LEE AND SunGg-Eun KoH

ABSTRACT. A characterization of geodesic spheres in the simply
connected space forms in terms of the ratio of the Gauss-Kronecker
curvature and the (usual) mean curvature is given: An immersion
of n dimensional compact oriented manifold without boundary into
the n+ 1 dimensional Euclidean space, hyperbolic space or open half
sphere is a totally umbilic immersion if the mean curvature Hy does
not vanish and the ratio Hn/H1 of the Gauss-Kronecker curvature
H,, and H; is constant.

1. Introduction

Let M™ be an immersed submanifold of N"*! and let H}, denote the
k-th mean curvature function of M™, that is, Hy is the k-th elementary
symmetric polynomial of principal curvatures of M™ divided by (2)
For instance, H; is the usual mean curvature and H,, is the Gauss-
Kronecker curvature. '

In [5], we obtained the following characterization of round spheres
in the simply connected space forms in terms of the mean curvature
functions Hp:

THEOREM A. Let N™t1 be one of the Euclidean space R™"t!, the
hyperbolic space H™*! or the open half sphere Si“ and ¢ : M™ —
N™*1 be an isometric immersion of a compact oriented n-dimensional
manifold without boundary M™. If Hy..; does not vanish and the ratio
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Hy/Hy_1 of two consecutive mean curvatures is a constant for some
k=2,...,n, then ¢(M™) is a geodesic hypersphere.

While in the known characterizations of round spheres we need to
assume that a mean curvature function is constant joint with some extra
global conditions, for example, convexity [10], star-shapedness [4], or
embeddedness [1], [6], [7], [8], [9], the above theorem shows that the
mean curvature function itself is enough to characterize round spheres
(cf. [3]).

In this note, we consider the other extreme case and prove the fol-
lowing theorem:

THEOREM B. Let N™*! be one of the Euclidean space R"*!, the
hyperbolic space H*t! or the open half sphere S'}fl and ¢ : M" —
N™*t1 be an isometric immersion of a compact oriented n-dimensional
manifold without boundary M™. If Hy does not vanish and the ratio
H,,/H; of the Gauss-Kronecker curvature and the usual mean curvature
is a constant, then ¢(M™) is a geodesic hypersphere.

We cannot expect the same result for the whole sphere S™*!. For
example, H; and H; of the torus

Sa) x S'(b) c S, a®+b°=1, a#b

are nonzero constants.
The authors would like to thank Professor Hong-Jong Kim for his
interest in this paper and the referee for pointing out some mistakes.

2. Proof

We use the hyperboloid model for H**! and the usual embedding of
S+ into R**2. Let 1 denote a unit normal field on M™. We use the
following Minkowski formula (for proof, see [6]) where ( , ) denotes the
usual Euclidean inner product on R"*1 (on R**2) when N™*1 js R™t1
(when N”*1 is S71) and the Lorentzian inner product on R™2 when
Nl g H L,
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LEMMA A. Set Hy = 1. Then the following identities hold for every
k=1,...,n
(1) When N™t1 js R+

/M(Hk_l + Hy(g,m)) dM = 0.
(2) When N™*! is H™!,
fM(Hk~1<¢,p> + Hi(n,p)) dM =0 for any p € R™+2,
(3) When N™*! js ST

/M(Hk-1<¢,p> — Hy(n,p))dM =0 for any p € R™2.

We also use the following inequalities for higher order mean curva-
tures: ’

LEMMA B. Suppose that all the principal curvatures are positive.
Then, for every k = 1,2,...,n, the followings hold:

(1) Every k—th mean curvature function Hy, is positive.

(2) The equality HiH,_y = H, holds only at umbilical points.
(3) Hx/Hg—1 < Hy—1/Hp—2.

(4) For everyl <k, Hy/H; < Hp—1/Hj—1.

Proof. (1) is clear. ‘
(2) is the equality case for the arithmetric—geometric mean inequality.
For (3), see, for example, Section 12 of [2].
From (3), we have

Hy/Hg1 < Hy1/Hy—92 <--- < Hyyy/H < Hi/H 4.

Hence (4) holds. , O

Now, assume H,/H; = « for a constant number «.
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(2.1) Proof when N"*t! = R"*!: Since M™ is compact, one can
find a point in M™ where all the principal curvatures are positive. Then
H,, H, are positive at that point. Since H,/H; is constant on M"™ and
since H; does not vanish on M™ by assumption, H; and H,, are positive
on M"™. Then a > 0 and from the inequality (4) of Lemma B, we have

(*) 0<a=Hn/H1 <H,_; (= Hn—l/HO)-
Since H,, = aH;, we have by Lemma A,
0= [ (Has+ Halo,))aM
M
= / (Hn—l + aH1(¢,77>) dM’
M
that is,
1) [ Hoxa = [ (~aHy(g,m)am.
M M :
On the other hand, since « is constant, we also have by Lemma A,
[ a+Hug,m)am =o,
M

that is,
) [ wart = [ (-ay(s,m) M.
From (1) and (2), we have
/ (Ho_y — o) dM = 0.
M

Since we have from (),
Hn—l — Z 0,
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it follows that
H, y=a= Hn/Hl

everywhere on M™. Now, by (2) of lemma B, every point is an umbilical
point, that is, #(M™) is a geodesic hypersphere.

(2.2) Proof when N™*! = H"*l: At a point of M™ where the
distance function of H*™! attains its maximum, all the principal cur-
vatures are positive. Then () also holds in this case and Hy, H,, are
positive on M™. Since H,, = aH;, we have

0= / (Hnr(¢,p) + Ha(n, ) dM
M
= /M(H ~1(¢,p) + aHi{n,p)) dM,
that is,

[ Hotomant = [ (~ati(n,p)a
M M

Since « is constant, it also holds that

/ o((é,p) + Hy (1,p)) dM = 0,
M

then, it follows that

[ (s = a)(@.phan =o.
M

Now, if we take p = (1,0,...,0) € R®"2 then the sign of (¢,p) does
not change on M™. Since H,,..; —« > 0 from (x), we have H,_1—a =10
everywhere on M™. Then every point is an umbilical point as in (2.1).
Hence ¢(M™) is a geodesic hypersphere.

(2.3) Proof when N™*! = S7th:  Let ¢ € S™*! be the centre of
Si""l. Then at a point of M™ where the height function (¢, ¢) attains its
minimum, all the principal curvatures are positive because M™ lies in
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the open half sphere with the centre c. Then () holds and the equality
in (*) holds only at umbilical points. Proceeding as in (2.2), we have

/ (Ho_s — a)(,p) dM = 0.
M

Since M™ lies in the open half sphere, for p = ¢, (¢,¢) is positive on
M™. Then, since H,_1 — a > 0 by (x), it follows that H,_; —a =0
everywhere on M™. Now arguing in the same way as above we can see
that ¢(M™) is a geodesic hypersphere.

(10]
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