ANOTHER CHARACTERIZATION
OF ROUND SPHERES

SEUNG-WON LEE AND SUNG-EUN KOH

ABSTRACT. A characterization of geodesic spheres in the simply connected space forms in terms of the ratio of the Gauss-Kronecker curvature and the (usual) mean curvature is given: An immersion of n dimensional compact oriented manifold without boundary into the $n+1$ dimensional Euclidean space, hyperbolic space or open half sphere is a totally umbilic immersion if the mean curvature H_1 does not vanish and the ratio H_n/H_1 of the Gauss-Kronecker curvature H_n and H_1 is constant.

1. Introduction

Let M^n be an immersed submanifold of N^{n+1} and let H_k denote the k-th mean curvature function of M^n, that is, H_k is the k-th elementary symmetric polynomial of principal curvatures of M^n divided by $\binom{n}{k}$. For instance, H_1 is the usual mean curvature and H_n is the Gauss-Kronecker curvature.

In [5], we obtained the following characterization of round spheres in the simply connected space forms in terms of the mean curvature functions H_k:

Theorem A. Let N^{n+1} be one of the Euclidean space \mathbb{R}^{n+1}, the hyperbolic space \mathbb{H}^{n+1} or the open half sphere S^{n+1}_+ and $\phi : M^n \to N^{n+1}$ be an isometric immersion of a compact oriented n-dimensional manifold without boundary M^n. If H_{k-1} does not vanish and the ratio
Seung-Won Lee and Sung-Eun Koh

H_k / H_{k-1} of two consecutive mean curvatures is a constant for some $k = 2, \ldots, n$, then $\phi(M^n)$ is a geodesic hypersphere.

While in the known characterizations of round spheres we need to assume that a mean curvature function is constant joint with some extra global conditions, for example, convexity [10], star-shapedness [4], or embeddedness [1], [6], [7], [8], [9], the above theorem shows that the mean curvature function itself is enough to characterize round spheres (cf. [3]).

In this note, we consider the other extreme case and prove the following theorem:

Theorem B. Let N^{n+1} be one of the Euclidean space \mathbb{R}^{n+1}, the hyperbolic space H^{n+1} or the open half sphere S^{n+1}_+ and $\phi : M^n \to N^{n+1}$ be an isometric immersion of a compact oriented n-dimensional manifold without boundary M^n. If H_1 does not vanish and the ratio H_n / H_1 of the Gauss-Kronecker curvature and the usual mean curvature is a constant, then $\phi(M^n)$ is a geodesic hypersphere.

We cannot expect the same result for the whole sphere S^{n+1}. For example, H_1 and H_2 of the torus

$$S^1(a) \times S^1(b) \subset S^3, \quad a^2 + b^2 = 1, \quad a \neq b$$

are nonzero constants.

The authors would like to thank Professor Hong-Jong Kim for his interest in this paper and the referee for pointing out some mistakes.

2. Proof

We use the hyperboloid model for H^{n+1} and the usual embedding of S^{n+1} into \mathbb{R}^{n+2}. Let η denote a unit normal field on M^n. We use the following Minkowski formula (for proof, see [6]) where $(\ , \)$ denotes the usual Euclidean inner product on \mathbb{R}^{n+1} (on \mathbb{R}^{n+2}) when N^{n+1} is \mathbb{R}^{n+1} (when N^{n+1} is S^{n+1}_+) and the Lorentzian inner product on \mathbb{R}^{n+2} when N^{n+1} is H^{n+1}.

702
Another characterization of round spheres

Lemma A. Set $H_0 = 1$. Then the following identities hold for every $k = 1, \ldots, n$.

1. When N^{n+1} is \mathbb{R}^{n+1},
 \[
 \int_M (H_{k-1} + H_k \langle \phi, \eta \rangle) \, dM = 0.
 \]

2. When N^{n+1} is \mathbb{H}^{n+1},
 \[
 \int_M (H_{k-1} \langle \phi, p \rangle + H_k \langle \eta, p \rangle) \, dM = 0 \text{ for any } p \in \mathbb{R}^{n+2}.
 \]

3. When N^{n+1} is S^{n+1}_+,
 \[
 \int_M (H_{k-1} \langle \phi, p \rangle - H_k \langle \eta, p \rangle) \, dM = 0 \text{ for any } p \in \mathbb{R}^{n+2}.
 \]

We also use the following inequalities for higher order mean curvatures:

Lemma B. Suppose that all the principal curvatures are positive. Then, for every $k = 1, 2, \ldots, n$, the followings hold:

1. Every k-th mean curvature function H_k is positive.
2. The equality $H_1 H_{n-1} = H_n$ holds only at umbilical points.
3. $H_k / H_{k-1} \leq H_{k-1} / H_{k-2}$.
4. For every $l < k$, $H_k / H_l \leq H_{k-1} / H_{l-1}$.

Proof. (1) is clear.

(2) is the equality case for the arithmetic–geometric mean inequality. For (3), see, for example, Section 12 of [2].

From (3), we have
\[
H_k / H_{k-1} \leq H_{k-1} / H_{k-2} \leq \cdots \leq H_{l+1} / H_l \leq H_l / H_{l-1}.
\]

Hence (4) holds.

Now, assume $H_n / H_1 = \alpha$ for a constant number α.

703
(2.1) **Proof when** $N^{n+1} = \mathbb{R}^{n+1}$: Since M^n is compact, one can find a point in M^n where all the principal curvatures are positive. Then H_n, H_1 are positive at that point. Since H_n/H_1 is constant on M^n and since H_1 does not vanish on M^n by assumption, H_1 and H_n are positive on M^n. Then $\alpha > 0$ and from the inequality (4) of Lemma B, we have

\[
(*) \quad 0 < \alpha = H_n/H_1 \leq H_{n-1} \ (= H_{n-1}/H_0).
\]

Since $H_n = \alpha H_1$, we have by Lemma A,

\[
0 = \int_M (H_{n-1} + H_n \langle \phi, \eta \rangle) \, dM = \int_M (H_{n-1} + \alpha H_1 \langle \phi, \eta \rangle) \, dM,
\]

that is,

\[
(1) \quad \int_M H_{n-1} \, dM = \int_M (-\alpha H_1 \langle \phi, \eta \rangle) \, dM.
\]

On the other hand, since α is constant, we also have by Lemma A,

\[
\int_M \alpha (1 + H_1 \langle \phi, \eta \rangle) \, dM = 0,
\]

that is,

\[
(2) \quad \int_M \alpha \, dM = \int_M (-\alpha H_1 \langle \phi, \eta \rangle) \, dM.
\]

From (1) and (2), we have

\[
\int_M (H_{n-1} - \alpha) \, dM = 0.
\]

Since we have from (*),

\[
H_{n-1} - \alpha \geq 0,
\]

704
Another characterization of round spheres

it follows that

$$H_{n-1} = \alpha = H_n / H_1$$

everywhere on M^n. Now, by (2) of lemma B, every point is an umbilical point, that is, $\phi(M^n)$ is a geodesic hypersphere.

(2.2) **Proof when $N^{n+1} = H^{n+1}$**: At a point of M^n where the distance function of H^{n+1} attains its maximum, all the principal curvatures are positive. Then (*) also holds in this case and H_1, H_n are positive on M^n. Since $H_n = \alpha H_1$, we have

$$0 = \int_M (H_{n-1} \langle \phi, p \rangle + H_n \langle \eta, p \rangle) \, dM$$

$$= \int_M (H_{n-1} \langle \phi, p \rangle + \alpha H_1 \langle \eta, p \rangle) \, dM,$$

that is,

$$\int_M H_{n-1} \langle \phi, p \rangle \, dM = \int_M (-\alpha H_1 \langle \eta, p \rangle) \, dM.$$

Since α is constant, it also holds that

$$\int_M \alpha (\langle \phi, p \rangle + H_1 \langle \eta, p \rangle) \, dM = 0,$$

then, it follows that

$$\int_M (H_{n-1} - \alpha) \langle \phi, p \rangle \, dM = 0.$$

Now, if we take $p = (1, 0, \ldots, 0) \in \mathbb{R}^{n+2}$, then the sign of $\langle \phi, p \rangle$ does not change on M^n. Since $H_{n-1} - \alpha \geq 0$ from (*), we have $H_{n-1} - \alpha = 0$ everywhere on M^n. Then every point is an umbilical point as in (2.1). Hence $\phi(M^n)$ is a geodesic hypersphere.

(2.3) **Proof when $N^{n+1} = S^{n+1}_+$**: Let $c \in S^{n+1}$ be the centre of S^{n+1}_+. Then at a point of M^n where the height function $\langle \phi, c \rangle$ attains its minimum, all the principal curvatures are positive because M^n lies in
the open half sphere with the centre c. Then (*) holds and the equality in (*) holds only at umbilical points. Proceeding as in (2.2), we have

$$\int_M (H_{n-1} - \alpha) \langle \phi, p \rangle \, dM = 0.$$

Since M^n lies in the open half sphere, for $p = c$, $\langle \phi, c \rangle$ is positive on M^n. Then, since $H_{n-1} - \alpha \geq 0$ by (*), it follows that $H_{n-1} - \alpha = 0$ everywhere on M^n. Now arguing in the same way as above we can see that $\phi(M^n)$ is a geodesic hypersphere.

References

Department of Mathematics, Konkuk University, Seoul 143-701, Korea
E-mail: sekoh@kkucc.konkuk.ac.kr

706