ANOTHER CHARACTERIZATION OF ROUND SPHERES

SEUNG-WON LEE AND SUNG-EUN KOH

ABSTRACT. A characterization of geodesic spheres in the simply connected space forms in terms of the ratio of the Gauss-Kronecker curvature and the (usual) mean curvature is given: An immersion of n dimensional compact oriented manifold without boundary into the n+1 dimensional Euclidean space, hyperbolic space or open half sphere is a totally umbilic immersion if the mean curvature H_1 does not vanish and the ratio H_n/H_1 of the Gauss-Kronecker curvature H_n and H_1 is constant.

1. Introduction

Let M^n be an immersed submanifold of N^{n+1} and let H_k denote the k-th mean curvature function of M^n , that is, H_k is the k-th elementary symmetric polynomial of principal curvatures of M^n divided by $\binom{n}{k}$. For instance, H_1 is the usual mean curvature and H_n is the Gauss-Kronecker curvature.

In [5], we obtained the following characterization of round spheres in the simply connected space forms in terms of the mean curvature functions H_k :

THEOREM A. Let N^{n+1} be one of the Euclidean space \mathbb{R}^{n+1} , the hyperbolic space \mathbb{H}^{n+1} or the open half sphere \mathbb{S}^{n+1}_+ and $\phi: M^n \to N^{n+1}$ be an isometric immersion of a compact oriented n-dimensional manifold without boundary M^n . If H_{k-1} does not vanish and the ratio

Received November 18, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 53C40, 53C42.

Key words and phrases: Gauss-Kronecker curvature, mean curvature, principal curvature, umbilical point, Minkowski formula.

This research was supported by the KOSEF 96-0701-02-01-3 and by Konkuk University in 1998.

 H_k/H_{k-1} of two consecutive mean curvatures is a constant for some $k=2,\ldots,n$, then $\phi(M^n)$ is a geodesic hypersphere.

While in the known characterizations of round spheres we need to assume that a mean curvature function is constant joint with some extra global conditions, for example, convexity [10], star-shapedness [4], or embeddedness [1], [6], [7], [8], [9], the above theorem shows that the mean curvature function itself is enough to characterize round spheres (cf. [3]).

In this note, we consider the other extreme case and prove the following theorem:

THEOREM B. Let N^{n+1} be one of the Euclidean space \mathbb{R}^{n+1} , the hyperbolic space \mathbb{H}^{n+1} or the open half sphere \mathbb{S}^{n+1}_+ and $\phi: M^n \to N^{n+1}$ be an isometric immersion of a compact oriented n-dimensional manifold without boundary M^n . If H_1 does not vanish and the ratio H_n/H_1 of the Gauss-Kronecker curvature and the usual mean curvature is a constant, then $\phi(M^n)$ is a geodesic hypersphere.

We cannot expect the same result for the whole sphere \mathbb{S}^{n+1} . For example, H_1 and H_2 of the torus

$$\mathbb{S}^1(a) \times \mathbb{S}^1(b) \subset \mathbb{S}^3, \quad a^2 + b^2 = 1, \quad a \neq b$$

are nonzero constants.

The authors would like to thank Professor Hong-Jong Kim for his interest in this paper and the referee for pointing out some mistakes.

2. Proof

We use the hyperboloid model for \mathbb{H}^{n+1} and the usual embedding of \mathbb{S}^{n+1} into \mathbb{R}^{n+2} . Let η denote a unit normal field on M^n . We use the following Minkowski formula (for proof, see [6]) where \langle , \rangle denotes the usual Euclidean inner product on \mathbb{R}^{n+1} (on \mathbb{R}^{n+2}) when N^{n+1} is \mathbb{R}^{n+1} (when N^{n+1} is \mathbb{S}^{n+1}) and the Lorentzian inner product on \mathbb{R}^{n+2} when N^{n+1} is \mathbb{H}^{n+1} .

Another characterization of round spheres

LEMMA A. Set $H_0 = 1$. Then the following identities hold for every $k = 1, \ldots, n$.

(1) When N^{n+1} is \mathbb{R}^{n+1} ,

$$\int_{M} (H_{k-1} + H_k \langle \phi, \eta \rangle) dM = 0.$$

(2) When N^{n+1} is \mathbb{H}^{n+1} ,

$$\int_M (H_{k-1}\langle \phi,p\rangle + H_k\langle \eta,p\rangle)\,dM = 0 \ \text{ for any } p\in\mathbb{R}^{n+2}.$$

(3) When N^{n+1} is \mathbb{S}^{n+1}_+ ,

$$\int_{M} (H_{k-1}\langle \phi, p \rangle - H_{k}\langle \eta, p \rangle) dM = 0 \text{ for any } p \in \mathbb{R}^{n+2}.$$

We also use the following inequalities for higher order mean curvatures:

LEMMA B. Suppose that all the principal curvatures are positive. Then, for every k = 1, 2, ..., n, the followings hold:

- (1) Every k-th mean curvature function H_k is positive.
- (2) The equality $H_1H_{n-1} = H_n$ holds only at umbilical points.
- (3) $H_k/H_{k-1} \leq H_{k-1}/H_{k-2}$.
- (4) For every l < k, $H_k/H_l \le H_{k-1}/H_{l-1}$.

Proof. (1) is clear.

(2) is the equality case for the arithmetric—geometric mean inequality. For (3), see, for example, Section 12 of [2]. From (3), we have

$$H_k/H_{k-1} \le H_{k-1}/H_{k-2} \le \cdots \le H_{l+1}/H_l \le H_l/H_{l-1}.$$

Hence (4) holds.

Now, assume $H_n/H_1 = \alpha$ for a constant number α .

(2.1) Proof when $N^{n+1} = \mathbb{R}^{n+1}$: Since M^n is compact, one can find a point in M^n where all the principal curvatures are positive. Then H_n, H_1 are positive at that point. Since H_n/H_1 is constant on M^n and since H_1 does not vanish on M^n by assumption, H_1 and H_n are positive on M^n . Then $\alpha > 0$ and from the inequality (4) of Lemma B, we have

(*)
$$0 < \alpha = H_n/H_1 \le H_{n-1} \ (= H_{n-1}/H_0).$$

Since $H_n = \alpha H_1$, we have by Lemma A,

$$egin{aligned} 0 &= \int_M (H_{n-1} + H_n \langle \phi, \eta
angle) \, dM \ &= \int_M (H_{n-1} + lpha H_1 \langle \phi, \eta
angle) \, dM, \end{aligned}$$

that is,

(1)
$$\int_{M} H_{n-1} dM = \int_{M} (-\alpha H_{1} \langle \phi, \eta \rangle) dM.$$

On the other hand, since α is constant, we also have by Lemma A,

$$\int_M lpha(1+H_1\langle\phi,\eta
angle)\,dM=0,$$

that is,

(2)
$$\int_{M} \alpha \, dM = \int_{M} (-\alpha H_{1} \langle \phi, \eta \rangle) \, dM.$$

From (1) and (2), we have

$$\int_M (H_{n-1} - \alpha) \, dM = 0.$$

Since we have from (*),

$$H_{n-1}-\alpha\geq 0,$$

it follows that

$$H_{n-1} = \alpha = H_n/H_1$$

everywhere on M^n . Now, by (2) of lemma B, every point is an umbilical point, that is, $\phi(M^n)$ is a geodesic hypersphere.

(2.2) **Proof when** $N^{n+1} = \mathbb{H}^{n+1}$: At a point of M^n where the distance function of \mathbb{H}^{n+1} attains its maximum, all the principal curvatures are positive. Then (*) also holds in this case and H_1, H_n are positive on M^n . Since $H_n = \alpha H_1$, we have

$$0 = \int_{M} (H_{n-1}\langle \phi, p \rangle + H_{n}\langle \eta, p \rangle) dM$$
$$= \int_{M} (H_{n-1}\langle \phi, p \rangle + \alpha H_{1}\langle \eta, p \rangle) dM,$$

that is,

$$\int_M H_{n-1}\langle \phi, p \rangle \, dM = \int_M (-lpha H_1\langle \eta, p \rangle) \, dM.$$

Since α is constant, it also holds that

$$\int_{M} \alpha(\langle \phi, p \rangle + H_1 \langle \eta, p \rangle) dM = 0,$$

then, it follows that

$$\int_{M} (H_{n-1} - \alpha) \langle \phi, p \rangle dM = 0.$$

Now, if we take $p = (1, 0, ..., 0) \in \mathbb{R}^{n+2}$, then the sign of $\langle \phi, p \rangle$ does not change on M^n . Since $H_{n-1} - \alpha \geq 0$ from (*), we have $H_{n-1} - \alpha = 0$ everywhere on M^n . Then every point is an umbilical point as in (2.1). Hence $\phi(M^n)$ is a geodesic hypersphere.

(2.3) Proof when $N^{n+1} = \mathbb{S}^{n+1}_+$: Let $c \in \mathbb{S}^{n+1}$ be the centre of \mathbb{S}^{n+1}_+ . Then at a point of M^n where the height function $\langle \phi, c \rangle$ attains its minimum, all the principal curvatures are positive because M^n lies in

the open half sphere with the centre c. Then (*) holds and the equality in (*) holds only at umbilical points. Proceeding as in (2.2), we have

$$\int_{M} (H_{n-1} - \alpha) \langle \phi, p \rangle dM = 0.$$

Since M^n lies in the open half sphere, for p = c, $\langle \phi, c \rangle$ is positive on M^n . Then, since $H_{n-1} - \alpha \ge 0$ by (*), it follows that $H_{n-1} - \alpha = 0$ everywhere on M^n . Now arguing in the same way as above we can see that $\phi(M^n)$ is a geodesic hypersphere.

References

- A. D. Alexandrov, A characteristic property of spheres, Ann. Math. Pura Appl. 58 (1962), 303-315.
- [2] E. F. Beckenbach, R. Bellman, Inequalities, Springer Verlag, Berlin, 1971.
- [3] I. Bivens, Integral formulas and hyperspheres in a simply connected space form, Proc. Amer. Math. Soc. 88 (1983), 113-118.
- [4] C. C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954), 286-294.
- [5] S-E. Koh, A characterization of round spheres, Proc. Amer. Math. Soc. 126 (1998), 3657-3660.
- [6] S. Montiel, A. Ros, Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, Differential Geometry (B. Lawson, ed.), Pitman Mono., vol. 52, Longman, New York, 1991, pp. 279-296.
- [7] R. C. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. Jour. 26 (1977), 459-472.
- [8] A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Revista Matemática Iberoamericana 3 (1987), 447-453.
- [9] _____, Compact hypersurfaces with constant scalar curvature and a congruence theorem, Jour. Diff. Geom. 27 (1988), 215-220.
- [10] W. Süss, Über Kennzeichnungen der Kugeln and Affinesphären durch Herrn Grotemeyer, Arch. Math. 3 (1952), 311-313.

DEPARTMENT OF MATHEMATICS, KONKUK UNIVERSITY, SEOUL 143-701, KOREA E-mail: sekoh@kkucc.konkuk.ac.kr