POSITIVELY EQUICONTINUOUS FLOWS ARE TOPOLOGICALLY CONJUGATE TO ROTATION FLOWS

JONG SOOK BAE, KYUNG JIN MIN, DUK HYON SUNG AND SEUNG KAB YANG¹

ABSTRACT. In this paper we study the continuity of rotation numbers of liftings of circle maps with degree one. And apply our result to prove that a positively equicontinuous flow of homeomorphisms on the circle S^1 is topologically conjugate to a continuous flow of rotation maps.

1. Introduction

Let X be a compact metric space and $C^0(X,X)$ denote the set of continuous maps from X into itself.

Throughout this paper N, Z, R and C denote the set of all positive integers, integers, reals and complex numbers, respectively. The symbol id_X denotes the identity map on the set X and S^1 stands for the unit circle, i.e.,

$$S^1 = \{ z \in C \mid |z| = 1 \}.$$

A family of continuous maps $T^t: S^1 \to S^1, \ t \in R$ is said to be a flow on S^1 if

$$T^t \circ T^s = T^{t+s}$$
 for $t, s \in R$.

A flow $\{T^t\}_{t\in R}$ is continuous if the mapping $T: R\times S^1\to S^1$ defined by $(t,z)\mapsto T^t(z)$ is continuous. Continuous flows of homeomorphisms on S^1 have been studied in [7].

Received December 10, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 58F20.

Key words and phrases: rotation map, rotation number, positively equicontinuous flow, topologically conjugate.

¹This paper was supported by BSRI-96-1441.

In 1998, M. Bajger [1] have investigated flows of homeomorphisms $\{T^t\}_{t\in R}$ on the unit circle S^1 satisfying the following hypothesis (Ω) : there exists $w\in R$ such that $(T^w)^n(z)\neq z$ for all $n\in Z\setminus\{0\}, z\in S^1$. Actually he proved that if $\{T^t\}_{t\in R}$ is an s-disjoint flow, then either $\{T^t\}_{t\in R}$ is topologically conjugate to a flow of rotations, or $\{T^t\}_{t\in R}$ is topologically conjugate to a special s-disjoint piecewise linear flow.

On the other hand, in 1993, S. H. Cho, K. J. Min and S. K. Yang [2] determined conditions under which equicontinuity of the family of iterates $\{T^n\}_{n\in N}$ of a continuous function T that maps the circle S^1 into itself does occur. Actually, they showed that when degree of T is $1, \{T^n\}_{n\in N}$ is equicontinuous if and only if T is topologically conjugate to a rotation map.

In this paper, we will show that a positively equicontinuous flow $\{T^t\}_{t\in R}$ of homeomorphisms on S^1 is topologically conjugate to a continuous flow of rotation maps.

2. Preliminaries and Definitions

The canonical projection map $p:R\to S^1$ defined by for $x\in R$, $p(x)=e^{2\pi ix}$ is said to be a covering map, since it wraps R around S^1 without doubling back (i.e., without critical points). Let $p:R\to S^1$ be the covering map and $z,w\in S^1$ with $z\neq w$. Define the distance d of z and w by d(z,w)=|x-y| for some $x,y\in R$ with $|x-y|\leq \frac{1}{2}$ such that p(x)=z and p(y)=w. Then d is a well-defined metric on S^1 which is equivalent to the original one. For the conveniency, we will use this metric d on S^1 . The distance between two maps $S,T\in C^0(S^1,S^1)$ defined by $d(S,T)=\sup_{z\in S^1}d(S(z),T(z))$.

Let $T: S^1 \to S^1$ be a continuous map on the circle. We say that a continuous map $F: R \to R$ is a *lifting* of T if $T \circ p = p \circ F$.

If F and F' are liftings of the same map T, then F = F' + n for some integer n. There exists a unique integer m such that F(x+1) = F(x) + m for all liftings F and all x, which is called the *degree* of T, denoted by deg(T). Define the distance of two liftings F and G by $d(F,G) = \sup\{|F(x) - G(x)| \mid x \in R\}$.

In 1979, Newhouse, Palis and Takens [5] have generalized a rotation

number for a homeomorphism of the circle S^1 to a continuous map of degree 1 and defined a rotation set.

DEFINITION. Let $T: S^1 \to S^1$ be a continuous map of deg(T) = 1 and let F be a lifting of T. Given $x \in R$, define the rotation number of F at x

$$\rho_x(F) = \lim_{n \to \infty} \sup \frac{F^n(x) - x}{n}.$$

And define the rotation set of F

$$\rho(F) = \{ \rho_x(F) | x \in R \}.$$

DEFINITION. Let $T: S^1 \to S^1$ be a continuous map of deg(T) = 1 and let F be a lifting of T. And let $p: R \to S^1$ be a covering map. Given $z \in S^1$, define the rotation number of T at z

$$\rho_z(T) = p(\rho_x(F)),$$

where p(x) = z for some $x \in R$. And define the rotation set of T

$$\rho(T) = {\rho_z(T) | z \in S^1}.$$

Notice that if a different lifting is used, this simply has the effect of translating the rotation set by an integer. It is known (see [3],[5]) that $\rho(F)$ is either one point or a closed interval, and if $a/b \in \rho(F)$ and GCD(a,b)=1 then T has a periodic point x of period b with $\rho_x(F)=a/b$. Conversely if T has a periodic point of period b then there exists $l \in Z$ such that $l/b \in \rho(F)$.

3. Main Results

Let $T: X \to X$ be a continuous map. A point $y \in X$ is called an ω -limit point of x if there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $T^{n_i}(x) \to y$. We denote the set of ω -limit points of x for T by $\omega_T(x)$.

A rotation map on S^1 is a map $T:S^1\to S^1$ defined by $T(z)=\alpha z$ for some $\alpha\in S^1$. In this case $\alpha=e^{2\pi i\rho}$ where ρ is the rotation number of T, and it is well-known that if $\rho(T)=\rho$ is an irrational number, then $\omega_T(x)=S^1$ for all $x\in S^1$.

THEOREM 1. Let $T: S^1 \to S^1$ be a rotation map with an irrational rotation number. Suppose that $S: S^1 \to S^1$ is a continuous map with $S \circ T = T \circ S$. Then S is a rotation map.

Proof. Let $e^{2\pi i\rho}$ be the irrational rotation number of T. Since T is a rotation map, we have $T(z) = \alpha z$ for all $z \in S^1$, where $\alpha = e^{2\pi i\rho}$. By hypothesis, we have $S(T(z)) = S(\alpha z)$, $T(S(z)) = \alpha S(z)$ and

$$\frac{S(z)}{z} = \frac{T(S(z))}{\alpha z} = \frac{S(\alpha z)}{\alpha z} = \frac{S(T(z))}{T(z)}$$
$$= \frac{S(T^2(z))}{T^2(z)} = \dots = \frac{S(T^n(z))}{T^n(z)}.$$

For a fixed $z \in S^1$, $\omega_T(z) = S^1$ since ρ is irrational. Therefore we have for all $u \in S^1$, there exists $n_i \to \infty$ such that $T^{n_i}(z) \to u$. Thus we have

$$\frac{S(u)}{u} = \lim_{n_i \to \infty} \frac{S(T^{n_i}(z))}{T^{n_i}(z)} = \lim_{n_i \to \infty} \frac{S(z)}{z} = \frac{S(z)}{z},$$

and hence $\frac{S(u)}{u}$ is a constant map. Putting $\frac{S(z)}{z} = \beta$, we have $S(z) = \beta z$. Hence S is a rotation map.

Remark that if the rotation number of T is rational, then S need not be a rotation map in Theorem 1.

Let $T \in C^0(S^1, S^1)$. Then a family of iterates $\{T^n\}_{n \in N}$ of T is said to be *equicontinuous* if for any $\epsilon > 0$, there exists $\delta > 0$ such that for $x, y \in S^1$, $d(x, y) < \delta$ implies $d(T^n(x), T^n(y)) < \epsilon$ for all $n \in N$.

The following lemma appears in [2].

LEMMA 2. Let $T, S: S^1 \to S^1$ be topologically conjugate. Then $\{T^n\}_{n\in N}$ is equicontinuous if and only if $\{S^n\}_{n\in N}$ is equicontinuous.

The following is a slight modification of Theorem 5 in [2].

LEMMA 3. Let $T \in C^0(S^1, S^1)$ with deg(T) = 1. Then $\{T^n\}_{n \in N}$ is equicontinuous if and only if T is topologically conjugate to a rotation map.

Using the Lemma 2 and Lemma 3, we have the following result.

Positively equicontinuous flows

COROLLARY 4. Let $T \in C^0(S^1, S^1)$ with an irrational rotation number and $\{T^n\}_{n \in N}$ be equicontinuous. Suppose that $S: S^1 \to S^1$ is a continuous map with $S \circ T = T \circ S$. Then $\{S^n\}_{n \in N}$ is also equicontinuous.

Proof. By Lemma 3, there exists a homeomorphism $\varphi: S^1 \to S^1$ such that $\varphi^{-1} \circ T \circ \varphi$ is a rotation map with an irrational rotation number. Now since $S \circ T = T \circ S$, we have

$$(\varphi^{-1}\circ S\circ\varphi)\circ(\varphi^{-1}\circ T\circ\varphi)=(\varphi^{-1}\circ T\circ\varphi)\circ(\varphi^{-1}\circ S\circ\varphi).$$

Hence by Theorem 1, $\varphi^{-1} \circ S \circ \varphi$ is a rotation map. Therefore, by Lemma 2, $\{S^n\}_{n \in \mathbb{N}}$ is equicontinuous.

The following lemma is due to Remark 1 in [6].

LEMMA 5. Let $\{T^t\}_{t\in R}$ be a flow on S^1 . If T^t is surjective, then $T^0=id_{S^1}$ and each T^t is a homeomorphism.

By Lemma 5, if T^t is surjective, then T^t must be a homeomorphism. Therefore we declare that $deg(T^t) \in \{1, -1\}$. However in this case we have $deg(T^t) = 1$ for all $t \in R$. In fact we have $deg(T^t) = deg(T^{\frac{t}{2}} \circ T^{\frac{t}{2}}) = deg(T^{\frac{t}{2}}) \cdot deg(T^{\frac{t}{2}}) = 1$. Hence the case $deg(T^t) = -1$ does not occurs.

LEMMA 6. (1) Let $T: S^1 \to S^1$ be a continuous map. For a continuous map $S: S^1 \to S^1$, if $d(S,T) < \frac{1}{2}$, then there exist liftings S_F and T_F of S and T, respectively, such that $d(S_F, T_F) = d(S,T)$.

- (2) For any two continuous maps $S,T:S^1\to S^1$, if $d(S,T)<\frac{1}{2}$, then deg(S)=deg(T).
- (3) For a continuous map $S: S^1 \to S^1$, there exists $\epsilon > 0$ such that for a continuous map $T: S^1 \to S^1$ with $S \circ T = T \circ S$ and $d(S,T) < \epsilon$, there exist liftings S_F and T_F of S and T respectively, such that $d(S_F, T_F) = d(S, T)$ and $S_F \circ T_F = T_F \circ S_F$.

Proof. (1): Take $x_0 \in R$ such that $d(S(p(x_0)), T(p(x_0))) = d(S, T)$. Then we can take liftings S_F and T_F of S and T, respectively such that

$$|S_F(x_0) - T_F(x_0)| = d(S(p(x_0)), T(p(x_0))) = d(S, T) < \frac{1}{2}.$$

Then we can prove $d(S_F, T_F) = d(S, T)$. Indeed, suppose that there exists $y \in R$ such that $|S_F(y) - T_F(y)| > d(S, T)$. Since a map $x \mapsto |S_F(x) - T_F(x)|$ is continuous, by the intermediate value theorem, there exists x_1 between x_0 and y such that $d(S, T) < |S_F(x_1) - T_F(x_1)| < \frac{1}{2}$. Then

$$d(S(p(x_1)), T(p(x_1))) = d(p(S_F(x_1)), p(T_F(x_1)))$$

= $|S_F(x_1) - T_F(x_1)| > d(S, T).$

This is a contradiction.

(2): By (1), there exist liftings S_F and T_F of S and T, respectively, with $d(S_F, T_F) = d(S, T)$. Let deg(S) = m and deg(T) = n. Then we have for $x \in R$, $S_F(x+1) = S_F(x) + m$ and $T_F(x+1) = T_F(x) + n$. Thus

$$\frac{1}{2} > |S_F(x+1) - T_F(x+1)|
\geq -|S_F(x) - T_F(x)| + |m-n|
\geq |m-n| - \frac{1}{2}.$$

Since |m-n| is constant and less than 1, we can obtain m=n. Thus we have deg(S)=deg(T).

(3) : Since S is uniformly continuous, there exists $0<\epsilon<\frac{1}{2}$ such that for $z,w\in S^1$

$$d(z, w) < \epsilon \text{ implies } d(S(z), S(w)) < \frac{1}{2}.$$

Let $T: S^1 \to S^1$ be a continuous map with $S \circ T = T \circ S$ and $d(S,T) < \epsilon$. By (1), there exist liftings S_F and T_F of S and T, respectively, such that $d(S_F, T_F) = d(S,T) < \epsilon$. Since S_F is a lifting of S, we know that for all $x, y \in R$

$$|x-y| < \epsilon \text{ implies } |S_F(x) - S_F(y)| < \frac{1}{2}.$$

We know that $S_F \circ T_F$ and $T_F \circ S_F$ are liftings of $S \circ T$ and $T \circ S$,

Positively equicontinuous flows

respectively, by observing the following diagram.

Then for all $x \in R$,

$$|T_F \circ S_F(x) - S_F \circ T_F(x)|$$

$$\leq |T_F(S_F(x)) - S_F(S_F(x))| + |S_F(S_F(x)) - S_F(T_F(x))| < \epsilon + \frac{1}{2} < 1.$$

Since $S_F \circ T_F$ and $T_F \circ S_F$ are liftings of the same map $S \circ T = T \circ S$, we have $S_F \circ T_F(x) = T_F \circ S_F(x)$.

LEMMA 7. Let $T \in C^0(S^1, S^1)$ with deg(T) = 1. Then there exists $\epsilon > 0$ such that for a continuous map $S: S^1 \to S^1$ with $S \circ T = T \circ S$ and $d(S,T) < \epsilon$, and for all $x \in R$

$$|\rho_x(S_F) - \rho_x(T_F)| \le d(S, T).$$

Proof. By Lemma 6 (3), there exist $\epsilon > 0$ such that there are liftings S_F and T_F of S and T, respectively with $S_F \circ T_F = T_F \circ S_F$ and $d(S_F, T_F) = d(S, T) < \epsilon$. Hence for $x \in R$,

$$S_F^n(x) - x$$

$$= S_F^n(x) - T_F(S_F^{n-1}(x)) + S_F^{n-1}(T_F(x)) - T_F^2(S_F^{n-2}(x)) + S_F^{n-2}(T_F^2(x)) - \dots - T_F^n(x) + T_F^n(x) - x.$$

Therefore we have

$$|S_F^n(x) - x| \le nd(S, T) + |T_F^n(x) - x|.$$

Now dividing inequality (1) by n and taking limit supremum as $n \to \infty$, we have $\rho_x(S_F) \leq d(S,T) + \rho_x(T_F)$. And by interchanging the roles of S_F and T_F , we have $\rho_x(T_F) \leq d(S,T) + \rho_x(S_F)$. Consequently, we have

$$|\rho_x(S_F) - \rho_x(T_F)| \le d(S, T).$$

LEMMA 8. Let $T, S: S^1 \to S^1$ be continuous maps with degree 1. Suppose that T is a rotation map. Then

$$|\rho_x(S_F) - \rho(T_F)| \le d(S, T).$$

Proof. Let $T_F: R \to R$ be a lifting of T with $T_F(x) = x + \rho(T_F)$ for all $x \in R$. Then we can take a lifting $S_F: R \to R$ of $S: S^1 \to S^1$ with $d(S_F, T_F) = d(S, T)$. Then we have $T_F^n(x) = x + n\rho(T_F)$ and hence

$$|T_F^k(S_F^{n-k}(x)) - T_F^{k+1}(S_F^{n-k-1}(x))|$$

$$= |S_F^{n-k}(x) + k\rho(T_F) - (T_F(S_F^{n-k-1}(x)) + k\rho(T_F))|$$

$$= |S_F(S_F^{n-k-1}(x)) - T_F(S_F^{n-k-1}(x))|$$

$$\leq d(S,T)$$

for $0 \le k < n$. Therefore we have

(2)
$$|S_F^n(x) - (x + n\rho(T_F))|$$

 $\leq |S_F^n(x) - T_F(S_F^{n-1}(x))| + |T_F(S_F^{n-1}(x)) - T_F^2(S_F^{n-2}(x))| + \cdots$
 $+ |T_F^n(x) - (x + n\rho(T_F))|$
 $\leq nd(S,T).$

Now dividing the inequality (2) by n and taking limit supremum as $n \to \infty$, we have $|\rho_x(S_F) - \rho(T_F)| \le d(S,T)$.

Remark that if $\{T^t\}_{t\in R}$ is a flow of homeomorphisms, then $\rho(T^t)$ is an one-point.

Let $\{T^t\}_{t\in R}, \{S^t\}_{t\in R}$ be two flows on the circle S^1 . We say that two flows $\{T^t\}_{t\in R}$ and $\{S^t\}_{t\in R}$ are topologically conjugate if there exists a homeomorphism $\varphi: S^1 \to S^1$ such that $S^t = \varphi^{-1} \circ T^t \circ \varphi$.

A continuous flow $\{T^t\}_{t\in R}$ of homeomorphisms is said to be *positively equicontinuous* if for any $\epsilon > 0$, there exists $\delta > 0$ such that for $z, w \in S^1$, $d(z, w) < \delta$ implies $d(T^t(z), T^t(w)) < \epsilon$ for all $t \geq 0$.

Positively equicontinuous flows

THEOREM 9. Let $\{T^t\}_{t\in R}$ be a positively equicontinuous flow of homeomorphisms on S^1 . Then either $\{T^t\}_{t\in R}$ is the trivial flow, or $\{T^t\}_{t\in R}$ is topologically conjugate to a continuous flow of rotation maps of S^1 . Indeed,

- (1) for all $t \in R$, $T^t = id_{S^1}$; or
- (2) there exist a homeomorphism $\varphi:S^1\to S^1$ and a continuous map $c:R\to S^1$ such that

(*)
$$\varphi^{-1} \circ T^t \circ \varphi(z) = c(t)z, \quad t \in R, \ z \in S^1$$

$$(**) c(s+t) = c(s)c(t), \quad s,t \in R.$$

Proof. Suppose that $T^{t_0} \neq id_{S^1}$ for some $t_0 > 0$. Then we have $\rho(T^{t_0})$ is not 1. Since the flow $\{T^t\}_{t \in R}$ is continuous and $\rho(T^0) = 1$, there exists $s \in (0,t_0)$ such that $\rho(T^s) = e^{2\pi i \rho}$ where ρ is irrational. Now by Lemma 3, there exists a homeomorphism $\varphi: S^1 \to S^1$ such that $\varphi^{-1} \circ T^s \circ \varphi$ is an irrational rotation map. Then by Theorem 1, $\varphi^{-1} \circ T^t \circ \varphi$ is also a rotation map for all $t \in R$. Hence there is a map $c: R \to S^1$ such that $\varphi^{-1} \circ T^t \circ \varphi(z) = c(t)z$ for all $t \in R, z \in S^1$. The continuity of c follows from the continuity of $(t,z) \mapsto T^t(z)$ and $c(t) = \frac{\varphi^{-1} \circ T^t \circ \varphi(z)}{z}$. Also we have

$$c(t+s) = \frac{\varphi^{-1} \circ T^{t+s} \circ \varphi(z)}{z}$$

$$= \frac{\varphi^{-1} \circ T^{t} \circ \varphi \circ \varphi^{-1} \circ T^{s} \circ \varphi(z)}{z}$$

$$= \frac{\varphi^{-1} \circ T^{t} \circ \varphi(c(s)z)}{z}$$

$$= \frac{c(t)c(s)z}{z} = c(t)c(s)$$

which proves (**).

J. S. Bae, K. J. Min, D. H. Sung and S. K. Yang

References

- [1] M. Bajger, On the structure of some flows on the unit circle, Aequationes Math. 55 (1998), 106-121.
- [2] S. H. Cho, K. J. Min and S. K. Yang, Equicontinuity of iterates of a map on the circle, Bull. Korean Math. Soc. 30 (1993), 239-244.
- [3] R. Ito, Rotation sets are closed, Math. Proc. Cambridge Phils Soc. 89 (1981), 107-111.
- [4] ____, Note on rotation set, Proc. Amer. Math. Soc. 89 (1983), 730-732.
- [5] S. Newhouse, J. Palis and F. Takens, Stable families of dynamical system. I: diffeomorphisms, I.M.P.A., Rio de Janeiro, Brazil (1979), preprint.
- [6] M. C. Zdun, The structure of iteration groups of continuous maps, Aequations Math. 46 (1993), 19-37.
- [7] _____, On the embedding of homoemorphisma of the circle in a continuous flow, Iteration theory and its functional equations (Proceedings, Schloss Hofen, 1984, ed.), by R. Riedl, L. Reich and Gy. Targoński, Lecture Notes in Mathematics 1163, Springer-Verlag, Berlin-Heidelberg-New York, 1985, pp. 218-231.

DEPARTMENT OF MATHEMATICS, MYONGJI UNIVERSITY, KYUNGGIDO, YONGIN 449-728, KOREA

E-mail: jsbae@wh.myongji.ac.kr skyang@wh.myongji.ac.kr