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CONTINUOUS SELECTIONS UNDER
WEAKER SEPARATION AXIOMS
AND REFLEXIVE BANACH SPACES

Myune Hyun CHO

ABSTRACT. The paper is devoted to generalizations of continuity of
set-valued mappings and some properties of hypertopologies on the
collection of some subsets of a topological space. It is also dedicated
to continuous selection theorems without relatively higher separation
axioms. More precisely, we give characterizations of A-collectionwise
normality using continuous functions as in Michael’s papers.

1. Introduction

Let X and Y be topological spaces, and 2Y be the family of nonempty’
subsets of Y. A mapping ® : X — 2Y is called a set-valued mapping.
A selection for ® : X — 2Y is a continuous map f : X — Y such that
f(z) € ®(z) for every z € X. A set-valued mapping ® : X — 2Y is
called lower semi-continuous (respectively, upper semi-continuous) or
Ls.c. (respectively, u.s.c.) if for every open subset V of Y,

HV)={zxeX:d(z)nV #0}
(respectively, ®# (V) = {z € X : ®(z) C V})

is an open subset of X.
Let

F(Y)={S€2¥:8 is closed}.
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In particular, if Y is a Banach space, then we let

F.(Y)={S €2¥: S is closed and convex},

C(Y)={SeF():S is compact or S =Y}.

This paper is dedicated to the theory of continuous selections of set-
valued mappings which is a classical area of mathematics as well as
an area which has been intensively developing in recent decades. The
fundamental results in this theory stemmed from the mid 1950’s by E.
Michael [15,16,17]. Most of the classical Michael’s-selection theorems
establish that existence of continuous selections for ls.c. set-valued
mapping ® : X — F(Y) is equivalent to some higher separation axioms
(i.e., paracompactness, collectionwise normality, normality, etc.) of X.
One of the theorems is the following.

THEOREM 1.1 ([16, Theorem 3.2"]). For a T} space X the following
are equivalent:

(a) X is paracompact.

(b) IfY is a Banach space, then every ls.c. ® : X — F.(Y) admits
a selection.

This theorem characterizes paracompactness using continuous func-
tions rather than covering properties. Since the continuous functions
are relatively easier to handle covering properties, the above Michael’s
theorem is important and applicable to certain proofs.

Let (Y,d) be a metric space and let for S € 2¥ and € > 0, B4(S)
denote {y € Y : d(y,S) < €¢}. A mapping ® : X — 2 is d-ls.c. (re
spectively, d-u.s.c.) if, given € > 0, every z € X admits a neighborhood
U such that for every u € U,

®(z) c B(®(u)) (respectively, ®(u) c BY(®(z)).

The following new important notions of continuity of set-valued map-
pings arise via combinations of the above versions of l.s.c. and u.s.c.
Namely, a'set-valued mapping ® is continuous if it is both ls.c. and
u.s.c.; ® is d-continuous if it is d-l.s.c. and d-u.s.c.; and finally @ is
d-prozimal continuous (see [12]) if it is both Ls.c. and d-u.s.c.
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A continuous @ is not necessarily d-continuous and vice versa (see,
e.g., {12, Proposition 2.5]), while every continuous or d-continuous ®
is d-proximal continuous (see Proposition 2.2 and 2.4). But, there are
d-proximal continuous mappings ® which are neither continuous nor
d-continuous (see [12]). In view of that, we shall henceforth restrict
our attention only to d-proximal continuity. This property, however,
depends on the metric d on the range Y. To overcome this, following
[12], we shall say that ® : X — 2Y is prozimal continuous; where Y is
metrizable, if there exists a compatible metric d on Y such that ® is
d-proximal continuous.

An extension problem is one of the important branch in general
topology. As we will see, selection theories are very closely related to
extension problems (see Theorem 4.3 and 4.4). We consider a following
general extension problem in general topology.

. General Question ([18]): Let X and Y be two topological spaces
with A C X closed, and let f : A — Y be continuous. Under what
conditions on X and Y, does f have a continuous extension over X (or
at least over some open U D A)?

A classical and basic answer to the above question is the following.

THEOREM 1.2 (Tietze’s extension Theorem). Let X be a normal
space. . Then for every closed A C X and every continuous function
f 1 A — R, there exists a continuous extension of f over X.

Collectionwise normality is another strengthening of normality, but
it is weaker than paracompactness. We can also give a characterization
of collectionwise normality using continuous functions as in Michael’s
papers (see [16], [17]). One of the purpose of this paper is to give char-
acterizations of A-collectionwise normality using continuous functjons
as in Michael’s papers. The paper is also devoted to generalizations of
continuity of set-valued mappings and some properties of hypertopolo-
gies on the collection of some subsets of a topological space.

This paper is organized as follows: Section 1 is the introduction.
Section 2 consists of preliminaries which involve generalizations of set-
valued continuous mappings. Section 3 is devoted to hypertopologies.
Section 4 is dedicated to extensions and selections.

Throughout this paper, by a space we always mean a topological

725



Myung Hyun Cho

space. As far as topological concepts are concerned, we follow [7].

2. Generalizations of Set-valued Continuous Mappings

Let X be a space, (Y,d) be a metric space, and let 7 be a topology
on F(Y). We say [9] that a set-valued mapping ® : X — F(Y) is
T-continuous if ® is continuous as a single-valued mapping from X to
the space (F(Y),7). So far, the two best known topologies on F(Y')
are the Hausdorff metric topology and Vietories topology.

For A,B € F(Y), we define H(d) : F(Y) x F(Y) — R by

H(d)(A,B) =inf{e >0: Ac B¥B) and B C B¥(A)}.

Then H(d) is a metric on F(Y) which is called the Hausdorff met-
ric, and the topology Tw(q) on F(Y) generated by H(d) is called the
Hausdorff metric topology.

The Vietories topology 7v on F(Y) is a topology generated by all
collections of the form

W ={SeF(Y):SNV#0,VeV, and Sc|JV},

where V runs over the finite families of open subsets of Y.
The d-proximal topology Tsq) on F(Y) is a topology generated by
all collections of the form

(M) ={S e (V) :d(s,Y\|JV) >0},

where V is again a finite family of open subsets of Y.
We note that Ts(d) C TV (O TH(d)-

PROPOSITION 2.1 ([10]). Let X be a topological space, (Y,d) be a
metric space, and let ® : X — F(Y). Then

(a) ® is d-continuous if and only if it is Ty (4)-continuous.

(b) ® is continuous if and only if it is Ty -continuous.

(c) ® is d-proximal if and only if it is Ts(4)-continuous.

The following proposition shows us that d-proximal continuity is a
generalization of continuity of a set-valued mapping.
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PROPOSITION 2.2. Let X be a topological space and (Y,d) be a
metric space. Then every continuous ® : X — F(Y) is d-proximal
continuous.

Proof. Assume that ® : X — F(Y) is continuous. Then ® is Ls.c.
and u.s.c. So it suffices to claim that if ® is u.s.c., then it is d-u.s.c.
Let € > 0 and z € X. Then B4(®(z)) is open in Y. Since ® is us.c.,
®#(BL(®(z))) = {2z € X : ¥(z) € BY®(x))} is open in X. Clearly,
z € ®#(B3(®(x))). Therefore there is a neighborhood V of « such that
x €V C ®#(BY®(z))). Let z € V. Then z € ®#(BH&(z))), ie.,
() ¢ BY®(z)). Thus ® is d-u.s.c. a

We recall that a metric space (Y, d) is called a UC space (or an Atsuji
space) if each real-valued continuous function f : X — R is uniformly
continuous. "

THEOREM 2.3. If (Y,d) is a UC space (or an Atsuji space), then
amap ® : X — F(Y) is continuous if and only if it is d-proximal
continuous. '

Proof. 1t follows from Proposition 2.2 above and Proposition 2.3 in
(10]. a

The following proposition shows us that d-proximal continuity is also
a generalization of d-continuity of a set-valued mapping.

PROPOSITION 2.4. Let X be a topological space and (Y,d) be a
metric space. Then every d-continuous ® : X — F(Y) is d-proximal
continuous.

Proof. Assume ® : X — F(Y) is d-continuous. Then ® is both
d-ls.c. and d-u.s.c. To show it is d-proximal continuous, it suffices to
claim that if ® is d-1.s.c., then it is l.s.c. Let ® be d-l.s.c. andlet U Cc Y
be open. We want to show that ®~}(U) = {z € X : ®(z) NU # B} is
open in X. Let z € ®(U) and € > 0. Since ® is d-l.s.c., there exists
a neighborhood V' of z such that if z € V, then ®(z) C BY(®(2)). Tt
is not difficult to show that V C ®~}(U). Therefore ®~1(U) is open in
X. Hence @ is Ls.c. and thus it is d-proximal continuous. O
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THEOREM 2.5. If (Y,d) is a totally bounded metric space, then a
map & : X — F(Y) is d-continuous if and only if it is d-proximal
continuous.

Proof. It follows from Proposition 2.4 above and Proposition 2.4 in
(10]. d

It should be mentioned here that a d-continuous set-valued mapping
& is not necessarily d-proximal continuous and vice versa.

PROPOSITION 2.6 ([10, Proposition 2.5]). The following two prop-
erties of a metric space (Y, d) are equivalent:

(a) (Y,d) is compact.

(b) Every ® : X — F(Y) is d-continuous if and only if it is continu-
ous.

COROLLARY 2.7. If (Y,d) is a compact metric space, then every
d-proximal continuous ® : X — F(Y) is continuous.

Proof. We first recall that a metric space is compact if and only if
it is totally bounded and complete. Let ® : X — F(Y) be d-proximal.
Then by Theorem 2.5, it is d-continuous and thus it is continuous by
Proposition 2.6. O

It should be also mentioned that a d-continuous set-valued mapping
® is not necessarily continuous and vice versa.

3. Hypertopologies

By a hyperspace of a Ty topological space (X ,T) we mean the set
F(X) of the nonempty closed subsets of X, endowed with a topology 7
such that the function i : (X,T) — (F(X),7) defined as i(z) = {z} is
a homeomorphism onto its image. Since the beginning of this century
some hyperspace topologies, also called hypertopologies, have been intro-
duced and developed; in particular, the Hausdorff metric and Vietories
topologies. These two topologies are very fine, at least in view of some
applications. It is a remarkable fact that the most important hyper-
space topologies arise as topologies induced by families of geometric set
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functionals. We give a particular attention to the interplay between
hyperspaces and geometrical functional analysis. Although hyperspace
topologies and related set convergence notions have been investigated
since the beginning of the century, the approach we take to the subject
reflects decisive modern contributions by mathematicians whose pri-
mary research interests lie outside general topology. The revival of the
subject stems from work of Robert Wijsman{22] in the middle of 1960’s,
and its development over the next fifteen years was to a large extent in
the hands of U. Mosco, R. Wets, H. Attouch, and their associates. This
increasing interest is owing to usefulness of these in different fields of
applications such as probability, statistics or variational problems for
instance.

Throughout this section, we do an effort in understanding structures,
common features, and general patterns of hypertopologiés in order to
find a common description for them. The papers [5], [21] or more
recently [14], are partially or completely devoted to this goal, offering
various possibilities of generalization.

Let us first describe notations we are going to deal with. For a
topological space X and E C X, write

E-={AcF(X): ANE #0},
Et={AeF(X): AC E};

further if (X,U) is a uniform space, put

Ett ={A e F(X):3U € U with U[A] C E},

where U[A] = {z € X : 3a € A with (z,a) € U}. There are three types
of hypertopologies: the hit-and-miss, the prorimal hit-and-miss, and
the weak topologies generated by gap and excess functionals on F(X),
respectively. '
Hit-and-miss topology: The abstract hit-and-miss topology on
F(X) has as a subbase all sets of the from V™, where V is open in
X, plus all sets of the form (B°)", where B° = X\B and B ranges
over a fixed nonempty subfamily A ¢ F(X). The well-known proto-
types of hit-and-miss topologies are the Vietories topology, with A =
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F(X)([4],[15]) and the Fell topology, with A=nonempty closed compact
subsets of X ([4],(8]).

Proximal hit-and-miss topology: If (X,l) is a uniform space
and (B€)" is replaced by (B¢)*" in the above definition, we get the
proximal hit-and-miss topology (or hit-and-far topology). For example,
among its useful prototypes we can find the prozimal topology, with
A = F(X)([6]) or the ball-prozimal topology, with A= closed proper
balls in a metric space X ([4]).

Weak topologies generated by gap and excess functionals:
In a metric space (X, d), we define the distance functional

d(z,A) = inf{d(z,a) :a € A}(z € X,0 # A C X),

the gap functional

D(A,B) = inf{d(a,B) : a € A}(A, B C X),

and the excess functional

e(A,B) =sup{d(a,B):a € A}(A,B c X).

Then the so-called weak hypertopologies (or initial topologies) on F(X)
are defined as the weak topologies generated by gap (in particular,
distance) and excess functionals, where one of the set arguments of
D(A, B) and e( A, B), respectively ranges over given subfamilies of F(X).
As a prototype of weak topologies we should mention the Wijsman
topology, denoted by Ty (q), which is the weak topology generated by
the distance functionals viewed as functionals of set argument.

THEOREM 3.1 ([6]). Let X be a metrizable space, and let D de-
note the set of compatible metrics for X. Then the Vietories topology
on F(X) is the weak topology determined by the family of distance
functionals {d(z,-) : z € X,d € D}.

The following theorem is basically due to [4, 3.2.3] and [10, 2.4]:

THEOREM 3.2. Let (Y,d) be a metric space. Then the following are
equivalent:

(1) (Y,d) is totally bounded.
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(2) TH(9) = Tw(a) on F(Y).

(3) (F(Y), Tr(ay) is second countable.

(4) Every ® : X — F(Y) is d-continuous if and only if it is d-proximal
continuous.

Proof. (1) & (2) < (3) is proved in [4 3.2.3]. (1) & (4) is proved
by (10, 2.4] and Theorem 2.5. O

It is well-known [4] that if (Y, d) is a metric space, then the Wijsman
topology Ty (4) contains the Fell topology 7p.

THEOREM 3.3. Let (Y, d) be a metric space. Then the following are
equivalent:

(1) (Y, d) is compact.

(2) TH(a) = TP on F(Y). :

(3) Every ® : X — F(Y) is d-continuous if and only if it is continu-
ous.

Throughout the remainder of this section, we consider basic cardinal
functions on hyperspaces which will be used in Section 4. A cardinal
function is a function ¢ from the class of all topological spaces (or some
precisely defined subclass) into the class of all infinite cardinal num-
bers such that ¢(X) = ¢(Y) whenever topological spaces X and Y are
homeomorphic. There are various topological invariant cardinal num-
bers that are assigned to each topological space X, e.g., the cardinality
| X|, weight w(X), character x(X), density d(X), and Lindeloff degree
L(X). Cardinal functions enable us to study general topology more
systematically. All cardinal functions defined in the rest of this paper
will assumed to have infinite values.

For any space (X, T),

w(X) = min{|B| : B is a base for X'}
is called the weight of X. We can easily see that if w(X) < Rg, then X
is second countable.

Let (X, T) be a space and € X. The character of z € X, denoted
by x(z, (X, T)), or x(x), is min{|B(X)| : B(X) is a local base at x}.
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The character of (X, T), denoted by x(X), is sup{x(z, (X, 7)) : z €
X}.

Note that if x((X,7T)) < N, then (X, T) is first countable. We can
easily see that x(X) < w(X) for any space X, which implies that every
second countable space is first countable.

THEOREM 3.4. Let X be a Hausdorff space. Then x(X) = x(F(X)),
where F(X) has the Vietories topology Ty .

Proof. We first show that x(F(X)) < x(X). Let x(X) = « and
E = {z1,22,... ,zn} € F(X). For each i = 1,2,...,n let V; be a
neighborhood base at z; with |V;| < k. Let W be the collection of all
open sets of the form (V) N F(X), say (V) = (W, Va,...,V,,), where
each V; € V;. Then |W| < k. We claim that W is a neighborhood base
at E. Let (Uj,Us,...,Un) N F(X) be a neighborhood of E, where
each U; is open in X. Let U = {U1,Us,... ,Un}. For each z; € E,
z; € U; for some U; € U. Since V; is a neighborhood base at x;, we
can choose an element V; € V; such that V; ¢ (W{U; e U : z; € U;}.
Then E € (W1, Va,..., Vo) N F(X) C (Uy,Us,... ,Upn) N F(X). This
proves our claim. Hence W is a neighborhood base at E with |W| < &
and thus x(F(X)) < k. The inequality x(X) < x(F(X)) easily follows
from the fact that X is homeomorphic to the subspace F;(X) C F(X),
where F;(X) is the family of all one-point subsets of X. Therefore
X(X) = x(F(X)). o

COROLLARY 3.5. Let X be a Hausdorff space. Then X is first-
countable if and only if F(X) is first-countable.

4. Extensions and Selections

Suppose that A is a subset of a topological space X. Let C(X) be
the collection of all real-valued continuous functions on X. Let C*(X)
be the subset of C'(X) consisting of all bounded functions in C(X). We
say that A is C-embedded (respectively, C*-embedded) in X if every
function in C(A) (respectively, C*(A)) can be extended to a function
in C(X) (respectively, C*(X)).

A subset A of a space X is said to be P*-embedded, where ) is an
infinite cardinal, if every continuous pseudometric on A with w(A4) < A
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can be extended to a continuous pseudometric on X with w(X) < A
The subset A is P-embedded if every continuous pseudometric on A can
be extended to a continuous pseudometric on X. The notion of P*-
embedded was introduced by Arens[2] under the name of “A-normally
embedded”. It is well-known ([1], Theorem 14.5) that a subset A of a
space X is P*-embedded if and only if for every locally finite cozero-set
cover W of A of cardinality [W| < X there exists a locally finite cozero-
set cover U of X such that W isrefined by U|4 = {UNA: U €U}, i.e,
every locally finite cozero set cover W of A of cardinality |W| < A has
a refinement that can be extended to a locally finite cozero set cover of
X. .

We can generalize P*-embedding as follows ({10]): Let X be a space
and A C X. We shall say that a map g : A — Y is A-regular if for
every locally finite cozero set cover V of Y there exists a locally finite
cozero set cover U of X such that g(U|4) refines V.

PROPOSITION 4.1. Let X be a space, A C X, and let Y be a second
countable space. Then every continuous map g : A — Y is A-regular
whenever A is PRo-embedded in X (or equivalently, A is C-embedded).

Proof. We first note from [1, Theorem 16.3] that A is C-embedded
if and only if it is PY°-embedded. Suppose A is P¥°-embedded. Let
g : A — Y be continuous and V be a locally finite cozero-set cover of
Y with |V| < Rg(since Y is second countable). Let W = {g~ (V) :
V € V}. Then W is a locally finite cozero set cover of A of cardinality
[W| < Rg. Since A is PRo_embedded, there exists a locally finite cozero
set cover U of X such that W is refined by Ul = {UNA:U € U}.
Then g(U|a) = {g(U N A) : U € U} refines V. Hence g is A-regular. []

REMARK. In fact, we may generalize Proposition 4.1 as follows (see
[10]): If X is a space, A C X, and Y is a space, then every continuous
map g: A — Y is A-regular whenever if A is P¥(Y)-embedded in X or
A is C*-embedded in X and g(A) C Y is compact.

If A > Rg we can ask for a characterization of P*-embedding in terms
of extending covers. It seems unlikely that every locally finite cozero-set
cover of A of cardinality at most A can be extended to a locally finite
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cozero-set cover of X if and only if A is P*-embedded in X. So the
following is a natural problem.

PROBLEM 4.2. Characterize A-regularity in terms of extending cov-
ers.

An normality can be characterized by C-embedding (Theorem 1.2),
collectionwise normality can be characterized in terms of P-embedding
([1]). More generally, we have the following:

First, we recall that a space X is called \-collectionwise normal if
X is a Ti-space and every discrete collection D of closed subsets of X
with |D| < X can be separated by an open discrete collection £ = {Ep :
D € D} (i.e., D C Ep for every D € D).

THEOREM 4.3. The following properties of a Ty-space X are equiv-
alent:

(a) X is A-collectionwise normal.

(b) Every closed subset A of X is P*-embedded.

(c) Every continuous mapping f : A — Y, where A is a closed subset
of X andY is a closed convex subset of a Banach space with w(Y) < A
has a continuous extension on X.

(d) Every continuous mapping f : A — H()), where A is a closed
subset of X and H()) is the generalized Hilbert space of weight \.

Proof. For (a) < (b), see Theorem 15.6 in [1]. For (a) & (c) & (d),
see Theorem 4.7 in [19]. 0

COROLLARY 4.4. The following properties of a T} -space X are equi-
valent:

(a) X is collectionwise normal.

(b) Every closed subset of X is P-embedded.

(c) For every Banach space Y and for every ls.c. ® : X — C(Y),
there is a selection.

Proof. For (a) & (b) is an immediate consequence of (a) < (b) in
Theorem 4.3. For (a) < (c), see Theorem 3.2” in [186]. O

In the rest of this section, we include recent results by Gutev and
Nedev related to the more weakening of separation axioms on the do-
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main of a l.s.c. set-valued mapping in comparison with Theorems 1.1,
4.3, and 4.4.

THEOREM 4.5 ([10]). Let X be a topological space, Y a Banach
space and ® : X — F.(Y) be d-proximal continuous, where d is the
metric generated by a norm on Y. Then ® admits a single-valued
continuous selection.

It is interesting that we can weaken the restriction on the continuity
of ® if Y is a reflexive Banach space in Theorem 4.5. More precisely,
®: X — FY) is called weakly continuous if it is l.s.c. and the set
d#(Y\K) is open in X for every weakly compact K C Y. We can
easily show that every d-proximal continuous ® : X — F.(Y) is weakly
continuous.

THEOREM 4.6 ([13]). Let X bea topological space, Y be a reflexive
Banach space, and let ® : X — F.(Y) be weakly continuous. Then ®
admits a single-valued continuous selection.
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