# ON THE SEPARATING IDEALS OF SOME VECTOR-VALUED GROUP ALGEBRAS

# RAMESH V. GARIMELLA

ABSTRACT. For a locally compact Abelian group G, and a commutative Banach algebra B, let  $L^1(G,B)$  be the Banach algebra of all Bochner integrable functions. We show that if G is noncompact and B is a semiprime Banach algebras in which every minimal prime ideal is contained in a regular maximal ideal, then  $L^1(G,B)$  contains no nontrivial separating ideal. As a consequence we deduce some automatic continuity results for  $L^1(G,B)$ .

### 1. Introduction

For any locally compact Abelian group G, and commutative Banach algebra B, let  $L^1(G,B)$  denote the convolution algebra of all integrable functions on G with values in B. As one might expect, there are some interesting similarities between B and  $L^1(G,B)$ . For instance,  $L^1(G,B)$ is semi-simple if and only if B is semi-simple, and the regular maximal ideals of  $L^1(G, B)$  are closely related in a natural way with the regular maximal ideals of both  $L^1(G,B)$  and B. Also,  $L^1(G,B)$  is Tauberian if and only if B is Tauberian. Refer to [8,9] for the proofs of the above results. Also it is easy to note that  $L^1(G,B)$  is semiprime when B is semiprime. The question whether the zero ideal is the only separating ideal in a semiprime Banach algebra still seems to be open. However, in this paper we prove that when G is a noncompact locally compact Abelian group, and B is a commutative semiprime Banach algebra (not necessarily unital) in which every minimal prime ideal is contained in a regular maximal ideal, then  $L^1(G,B)$  contains no non-trivial separating ideal. As a consequence we deduce some automatic continuity results

Received December 26, 1998.

<sup>1991</sup> Mathematics Subject Classification: 46J05, 46J20, 43A10, 43A20.

Key words and phrases: locally compact abelian groups, Banach algebras, separating ideal.

for the algebra  $L^1(G, B)$ . Our results extend some of the results in [11] for non unital Banach algebras, and also extend some results in [7] for semiprime Banach algebras. For relevant information on  $L^1(G, B)$  and for related results in harmonic analysis on Abelian groups, see [5,8,9,12].

# 2. Preliminaries

Let B be a commutative Banach algebra (not necessarily unital), and let G be a locally compact Abelian group with Haar measure m. Throughout the following, the dual group of G is denoted by  $\Gamma$  and the spectrum of B is denoted by  $\Delta(B)$ . Let  $L^1(G,B)$  denote the Banach algebra of all integrable function from G into B,

$$(fst g)(t):=\int\limits_G f(t-s)g(s)dm \ ext{ for all } f,g\in L^1(G,B) ext{ and } t\in G,$$

and let  $\|f\|_1 := \int_G \|f(t)\| dm(t)$  for all  $f \in L^1(G,B)$ . Recall that for any  $f \in L^1(G,B)$ , and  $\gamma$  in the dual group  $\Gamma$  of G,  $\hat{f}(\gamma) = \int_G \overline{\gamma(t)} f(t) dm(t)$  is known as the vector-valued Fourier transform of f at  $\gamma$ . Furthermore for any  $\gamma \in \Gamma$ , let  $M_{\gamma} := \{f \in L^1(G,B) : \hat{f}(\gamma) = \theta\}$  where  $\theta$  is the zero vector of B. Clearly,  $M_{\gamma}$  is a closed ideal of  $L^1(G,B)$ . If B has no non-trivial zero divisors, then  $M_{\gamma}$  is a closed prime ideal of  $L^1(G,B)$ . Recall that an ideal I of a commutative Banach algebra is said to be prime if the product  $xy \in I$  only if either  $x \in I$  or  $y \in I$ . It is an easy consequence of the Hahn-Banach theorem that  $\bigcap_{\gamma \in \Gamma} M_{\gamma}$  is the zero ideal

in  $L^1(G,B)$ . For any  $\gamma \in \Gamma, \, \phi \in \Delta(B)$ , let

$$M_{\gamma,\phi} := \{ f \in L^1(G,B) | \phi(\hat{f}(\gamma)) = 0 \}.$$

The regular maximal ideals of  $L^1(G, B)$  are given by  $M_{\gamma, \phi}$  for some  $\gamma \in \Gamma$ , and  $\phi \in \Delta(B)$  ([8]).

For each  $f \in L^1(G)$ , and  $x \in B$ , we let

$$(f \otimes x)(s) = f(s)x$$
 for all  $s \in G$ .

We recall some of the properties of the product  $f \otimes x$  in the following proposition.

PROPOSITION 2.1. Let G be a locally compact Abelian group, and let B be a commutative Banach algebra. Let  $x, y \in B$ ;  $f, g \in L^1(G)$ ; and  $\gamma$  a non-trivial continuous character on G. Then,

- (i)  $f \otimes x \in L^1(G, B)$ , and  $||f \otimes x||_1 = ||f||_1 ||x||$
- (ii)  $(f \pm g) \otimes x = f \otimes x \pm g \otimes x$
- (iii)  $\widehat{f \otimes x}(\gamma) = \widehat{f}(\gamma)x$
- (iv)  $(f \otimes x) * (g \otimes x) = (f * g) \otimes xy$
- (v) If B has the multiplicative identity 1, then  $(f * g) \otimes x = (f \otimes x) * (g \otimes 1) = (f \otimes 1) * (g \otimes x)$
- (vi) If  $f_n \to f$  in  $L^1(G)$  and  $x_n \to x$  in B, then  $f_n \otimes x_n \to f \otimes x$  in  $L^1(G,B)$ .

# 3. Main Results

Before we get to the main results, we need the following lemmas.

LEMMA 3.1. Let G be a noncompact locally compact Abelian group, B a commutative Banach algebra, and f a non-zero function in  $L^1(G, B)$ . For a given  $\gamma$  in the dual group  $\Gamma$  of G and a positive number  $\varepsilon$ , there exist  $f_1, f_2, \ldots, f_n$  in  $L^1(G)$  with compactly supported Fourier trans-

forms and 
$$x_1, x_2, \ldots, x_n$$
 in B such that  $||f - \sum_{i=1}^n f_i \otimes x_i|| < \epsilon + ||\hat{f}(\gamma)||$ ,

where  $\hat{f}_i(\gamma) = 0$  for  $1 \le i \le n$ .

*Proof.* Since finite linear combinations of the elements of the form  $h \otimes x$  where  $h \in L^1(G)$ , and  $x \in B$  are dense in  $L^1(G)$ , and the functions in  $L^1(G)$  with compactly supported Fourier transforms are dense in  $L^1(G)$ , there exist  $h_1, h_2, \ldots, h_n$  in  $L^1(G)$  with compactly supported Fourier transforms and  $x_1, x_2, \ldots, x_n$  in B such that

$$\|f - \sum_{i=1}^{n} h_i \otimes x_i\| < \frac{\varepsilon}{2}$$
. For  $1 \le i \le n$ , let  $Supp \hat{h}_i = \{\alpha \in \Gamma : \hat{h}_i(\alpha) \ne 0\}$ .

For each  $1 \le i \le n$ , we define

$$g(t) = \frac{\chi_{(\bigcup_{j=1}^{n} Supp \ \hat{h}_j)}}{m(\bigcup_{j=1}^{n} Supp \ \hat{h}_j)} \gamma(t),$$

where  $\chi_{(\bigcup_{j=1}^n Supp\ \hat{h}_j)}$  is the characteristic function of  $(\bigcup_{j=1}^n Supp\ \hat{h}_j)$ , and  $f_i = h_i - \hat{h}_i(\gamma)g$ . Clearly g and the  $f_i$ 's belong to  $L^1(G)$ . It is easy to see that  $\hat{g}(\gamma) = 1$ ,  $\hat{f}_i(\gamma) = 0$  for each i, and  $\|g\|_1 = 1$ . We have

$$\begin{split} &\|f - \sum_{i=1}^{n} (f_i \otimes x_i) - g \otimes \hat{f}(\gamma)\| \\ &= \|f - \sum_{i=1}^{n} (h_i \otimes x_i) + \sum_{i=1}^{n} (h_i \otimes x_i) - \sum_{i=1}^{n} (f_i \otimes x_i) - g \otimes \hat{f}(\gamma)\| \\ &\leq \|f - \sum_{i=1}^{n} (h_i \otimes x_i)\| + \|\sum_{i=1}^{n} (h_i - f_i) \otimes x_i - g \otimes \hat{f}(\gamma)\| \dots (A) \end{split}$$

Furthermore,

$$\begin{split} &\|\sum_{i=1}^{n}(h_{i}-f_{i})\otimes x_{i}-g\otimes\hat{f}(\gamma)\| = \|\sum_{i=1}^{n}\hat{h}_{i}(\gamma)g\otimes x_{i}-g\otimes\hat{f}(\gamma)\| \\ &= \int_{G}\|\sum_{i=1}^{n}\hat{h}_{i}(\gamma)g(t)x_{i}-g(t)\hat{f}(\gamma)\|dm(t) \\ &= \frac{1}{m(\bigcup_{j=1}^{n}Supp\ \hat{h}_{j})} \\ &\int_{G}\|\sum_{i=1}^{n}\hat{h}_{i}(\gamma)\chi_{(\bigcup_{j=1}^{n}Supp\ \hat{h}_{j})}\gamma(t)x_{i}-\chi_{(\bigcup_{j=1}^{n}Supp\ \hat{h}_{j})}\gamma(t)\hat{f}(\gamma)\|dm(t) \\ &= \frac{1}{m(\bigcup_{j=1}^{n}Supp\ \hat{h}_{j})}\int_{(\bigcup_{j=1}^{n}Supp\ h_{j})}\|\sum_{i=1}^{n}\hat{h}_{i}(\gamma)x_{i}-\hat{f}(\gamma)\|dm(t) \\ &= \|\sum_{i=1}^{n}\hat{h}_{i}(\gamma)x_{i}-\hat{f}(\gamma)\|\leq \|f-\sum_{i=1}^{n}h_{i}\otimes x_{i}\|<\frac{\varepsilon}{2}\dots(B) \end{split}$$

From (A) and (B) it follows that  $||F - \sum_{i=1}^{n} f_i \otimes x_i - g \otimes \hat{f}(\gamma)|| < \epsilon$ . Hence  $||f - \sum_{i=1}^{n} f_i \otimes x_i|| < \epsilon + ||\hat{f}(\gamma)||$ . This completes the proof of the Lemma.

LEMMA 3.2. Let G be a noncompact locally compact Abelian group, B a commutative Banach algebra, and f a non-zero function in  $L^1(G, B)$ . For a given  $\gamma$  in the dual group  $\Gamma$  of G and a given positive number  $\epsilon > 0$ , there exist  $g_1, g_2, \ldots, g_n$  in  $L^1(G)$ , a neighborhood V of  $\gamma$ , and  $x_1, x_2, \ldots, x_n$  in B such that

$$\|f-\sum_{i=1}^n g_i\otimes x_i\|<\epsilon+\|\hat{f}(\gamma)\|$$

where  $\hat{g}_i = 0$  on V for  $1 \le i \le n$ .

*Proof.* By Lemma 3.1, there exist  $f_1, f_2, \ldots, f_n$  in  $L^1(G)$  with compactly supported Fourier transforms, and  $x_1, x_2, \ldots, x_n$  in B such that

$$\|f - \sum_{i=1}^n f_i \otimes x_i\| < \frac{\epsilon}{2} + \|\hat{f}(\gamma)\|$$

where  $\hat{f}_i(\gamma) = 0$ . Since  $L^1(G)$  satisfies the Ditkin's condition ([12]), there exist  $g_1, g_2, \dots, g_n$  in  $L^1(G)$ , and a neighborhood V of  $\gamma$  such that  $\hat{g}_i = 0$  on V, and

$$||f_i - g_i||_1 < \frac{\epsilon}{2\left(1 + \sum_{i=1}^n ||x_i||\right)}$$

for  $1 \le i \le n$ . Now

$$||f - \sum_{i=1}^{n} g_{i} \otimes x_{i}||_{1} \leq ||f - \sum_{i=1}^{n} f_{i} \otimes x_{i}||_{1} + ||\sum_{i=1}^{n} (f_{i} - g_{i}) \otimes x_{i}||_{1}$$

$$\leq \frac{\epsilon}{2} + ||\hat{f}(\gamma)|| + \sum_{i=1}^{n} ||f_{i} - g_{i}||_{1} ||x_{i}||$$

$$< \frac{\epsilon}{2} + ||\hat{f}(\gamma)|| + \frac{\epsilon}{2\left(1 + \sum_{i=1}^{n} ||x_{i}||\right)} \left(\sum_{i=1}^{n} ||x_{i}||\right)$$

$$= \epsilon + ||\hat{f}(\gamma)||.$$

COROLLARY 3.3. Let  $f \in L^1(G,B)$ , and  $\gamma \in \Gamma$  such that  $\hat{f}(\gamma) = \theta$ . Given  $\epsilon > 0$ , there exist  $g_1, g_2, \ldots g_n$  in  $L^1(G)$  with a vanishing Fourier transform in a neighborhood V of  $\gamma$ , and  $x_1, x_2, \ldots, x_n$  in B such that  $\|f - \sum_{i=1}^n g_i \otimes x_i\| < \epsilon$ .

*Proof.* Obviously follows from the Lemma 3.2.

Now we are ready for the main results of the section.

THEOREM 3.4. Let G be a locally compact Abelian group,  $\gamma$  a continuous character on G, and  $\mathcal{P}$  a prime ideal contained in  $M_{\gamma}$ . Then  $\mathcal{P}$  is dense in  $M_{\gamma}$ .

Proof. Let  $\mathcal{P}$  be a prime ideal of  $L^1(G,B)$  contained in  $M_{\gamma}$ . Let f be a function with  $\hat{f}$  identically equal to the zero vector in a neighborhood V of  $\gamma$ . We claim that f belongs to  $\mathcal{P}$ . For, if g belongs to  $L^1(G)$  with  $\hat{g}(\gamma) \neq 0$ ,  $\hat{g} = 0$  on  $\Gamma - V$ , and x a non-zero vector in B, then  $(g \otimes x) * f = \Theta$  (the zero vector of  $L^1(G,B)$ ). Since  $\mathcal{P}$  is a prime ideal of  $L^1(G,B)$ , either  $g \otimes x \in \mathcal{P}$  or  $f \in \mathcal{P}$ . But  $g \otimes x(\gamma) = \hat{g}(\gamma)x \neq \theta$ . Hence  $f \in \mathcal{P}$ . Thus all the functions f in  $L^1(G,B)$  with vanishing Fourier transforms in a neighborhood of  $\gamma$  belong to  $\mathcal{P}$ . Hence by Lemma 3.2, it follows that  $\mathcal{P}$  is dense in  $M_{\gamma}$ . This completes the proof of the theorem.

THEOREM 3.5. Let G be a noncompact locally compact Abelian group, and B be a commutative Banach algebra. If  $\mathcal{P}$  is a closed prime ideal of  $L^1(G,B)$  contained in  $M_{\gamma,\phi}$  for some  $\gamma \in \Gamma$ , and  $\phi \in \Delta(B)$ , then  $\mathcal{P}$  contains  $M_{\gamma}$ . Furthermore  $\mathcal{P}$  does not contain  $M_{\sigma}$  for any  $\sigma \neq \gamma$ .

Proof. Let  $f \in M_{\gamma}$ . By Corollary 3.3, f can be approximated by a function g in  $L^1(G,B)$  with vanishing Fourier transform in a neighborhood V of  $\gamma$ . By an argument similar to the one given in Theorem 3.4, we can show  $g \in \mathcal{P}$ . Since  $\mathcal{P}$  is a closed ideal, it follows that  $f \in \mathcal{P}$ . Thus  $M_{\gamma}$  is contained in  $\mathcal{P}$ . Let  $\sigma \in \Gamma$  such that  $\sigma \neq \gamma$ . Suppose  $V_{\sigma}$  and  $V_{\gamma}$  are compact neighborhoods of  $\sigma$  and  $\gamma$  respectively such  $V_{\sigma} \cap V_{\gamma} = \emptyset$ . Then there exist functions  $f_{\sigma}$  and  $f_{\gamma}$  from G into the complex plane with the support of  $\hat{f}_{\sigma}$  contained in  $V_{\sigma}$  and the support

of  $\hat{f}_{\gamma}$  contained in  $V_{\gamma}$  such that  $\hat{f}_{\sigma}(\sigma) = 1$  and  $\hat{f}_{\gamma}(\gamma) = 1$ . Let  $x, y \in B$  such that  $\phi(x)\phi(y) \neq 0$ . Then  $f_{\sigma} \otimes x$ ,  $f_{\gamma} \otimes y \in L^{1}(G, B)$  such that  $(f_{\sigma} \otimes x) * (f_{\sigma} \otimes y) = \Theta$ . Since  $\mathcal{P}$  is a prime ideal contained in  $M_{\gamma,\sigma}$ , we get  $f_{\sigma} \otimes x \in \mathcal{P}$ . Obviously  $f_{\gamma} \otimes y \notin \mathcal{P}$ . However  $f_{\gamma} \otimes y \in M_{\sigma}$ . Therefore  $M_{\sigma}$  is not contained in  $\mathcal{P}$ .

# 4. Applications

Recall that a closed ideal S of a commutative Banach algebra A is called a separating ideal ([3]) if it satisfies the following condition: For each sequence  $\{a_k\}_{k\geq 1}$  in A there is a positive integer n such that  $\overline{a_1a_2\cdots a_nS}=\overline{a_1a_2\cdots a_kS}$   $(k\geq n)$ . For any derivation D on A, let  $\Im(D)=:\{a\in A| \text{ there is a sequence }\{a_n\} \text{ in } A \text{ with } a_n\to 0 \text{ and } Da_n\to a\}$ . For any epimorphism h form a commutative Banach algebra X onto A, let  $\Im(h)=:\{a\in A| \text{ there is a sequence }\{x_n\} \text{ in } X \text{ with } x_n\to 0 \text{ and } h(x_n)\to a\}$ . It is easy to show that  $\Im(D)$ , and  $\Im(h)$  are closed ideals of A. By the closed graph theorem D is continuous if and only if  $\Im(D)$  is zero. Similarly h is continuous if and only if  $\Im(h)$  is zero. It is well known that  $\Im(D)$  and  $\Im(h)$  are separating ideals of A ([13]). For further information on separating ideals, their relation to the prime ideals of the Banach algebra, and for related results on automatic continuity theory, see [1,2,3,4,6,10].

Now we are ready to state one of the main results of the section.

THEOREM 4.1. Let G be a noncompact locally compact Abelian group G, and B a commutative semiprime Banach algebra in which every minimal prime ideal is contained in a regular maximal ideal. Then  $L^1(G, B)$  contains no nontrivial separating ideal.

LEMMA 4.2. Let G be a noncompact locally compact Abelian group G, and B a commutative semiprime Banach algebra. For any  $\gamma \in \Gamma$ ,  $M_{\gamma} = \bigcap_{\mathcal{P} \in \mathcal{I}_{\gamma}} \mathcal{P}$  where  $\mathcal{I}_{\gamma}$  is the set of all minimal prime ideals of  $L^{1}(G, B)$  containing  $M_{\gamma}$ .

*Proof.* Let  $f \in \underset{\mathcal{P} \in \mathcal{I}_{\gamma}}{\cap} \mathcal{P}$ . Since there is a one-to-one correspondence between the prime ideals of the quotient algebra  $L^1(G, B)/M_{\gamma}$  and

the prime ideals of the algebra  $L^1(G, B)$  containing  $M_{\gamma}$ , there exists a positive integer n such that  $\underbrace{f * f * \cdots * f}_{n \text{ times}} \in M_{\gamma}$ . This implies  $(\hat{f}(\gamma))^n =$ 

$$\theta$$
. Since B is semiprime,  $\hat{f}(\gamma) = \theta$ . Hence  $f \in M_{\gamma}$ .

Proof of Theorem 4.1. If possible assume that  $\Im$  is a nontrivial separating ideal in  $L^1(G, B)$ .

CLAIM.  $\Im$  is contained in all but finitely many  $M_{\gamma}$  for  $\gamma \in \Gamma$ .

Proof of the Claim. Let  $\mathcal{M}$  be the set of all minimal prime ideals of  $L^1(G, B)$  not containing  $\mathfrak{F}$ . By [3]  $\mathcal{M}$  is a finite set. Let

$$\mathcal{M}_{\Delta} = \{ \mathcal{P} \in \mathcal{M} | \mathcal{P} \subseteq M_{\gamma, \phi} \text{ for some } (\gamma, \phi) \in \Gamma \times \Delta(B) \}$$

and  $\mathcal{M}_{\Delta'} = \mathcal{M} - \mathcal{M}_{\Delta}$ . By Theorem 3.5, each member of  $\mathcal{M}_{\Delta}$  contains a unique  $M_{\gamma}$  for some  $\gamma \in \Gamma$ . Let  $\Gamma_{\mathcal{M}_{\Delta}} = \{ \gamma \in \Gamma | M_{\gamma} \subseteq \mathcal{P} \text{ for some } \mathcal{P} \in \mathcal{M}_{\Delta} \}$ . Obviously  $\Gamma_{\mathcal{M}_{\Delta}}$  is a finite set. Since  $\Im$  is contained in all but finitely many closed prime ideals of  $L^1(G, B)$  ([3]), and since any prime ideal contains a minimal prime ideal, it follows that  $\Gamma_{\mathcal{M}_{\Delta}}$  is not empty. Let  $\gamma \in \Gamma - \Gamma_{\mathcal{M}_{\Delta}}$ . By Lemma 4.2,  $M_{\gamma} = \bigcap_{\mathcal{P} \in \mathcal{I}_{\gamma}} \mathcal{P}$  where  $\mathcal{I}_{\gamma}$  is the

set consisting of all minimal prime ideals of  $L^1(G,B)$  containing  $M_{\gamma}$ . Write  $\mathcal{I}_{\gamma} = \mathcal{I}_{\Delta} \cup \mathcal{I}_{\Delta'} \cup \mathcal{I}_{\Delta''}$  where

$$\mathcal{I}_{\Delta} = \{ \mathcal{P} \in \mathcal{I}_{\gamma} | \mathcal{P} \subseteq M_{\gamma, \phi} \text{ for some } \phi \in \Delta(B) \},$$

 $\mathcal{I}_{\Delta'} = \{ \mathcal{P} \in \mathcal{I}_{\gamma} | \mathcal{P} \text{ contains } \Im, \text{ and } \mathcal{P} \not\subseteq M_{\gamma,\phi} \text{ for each } \phi \in \Delta(B) \}$  and

 $\mathcal{I}_{\Delta''} = \{\mathcal{P} \in \mathcal{I}_{\gamma} | \mathcal{P} \text{ does not contain } \Im \text{ and } \mathcal{P} \not\subseteq M_{\gamma,\phi} \text{ for each } \phi \in \Delta(B) \}.$ 

Notice that  $\mathcal{I}_{\Delta''}$  is at most a finite set, and each  $\mathcal{P}$  in  $\mathcal{I}_{\Delta}$  contains  $\Im$ . Obviously

$$\mathcal{M} = (\underset{\mathcal{P} \in \mathcal{I}_{\Delta} \cup \mathcal{I}_{\Delta'}}{\cap \mathcal{P}}) \cap (\underset{\mathcal{P} \in \mathcal{I}_{\Delta''}}{\cap \mathcal{P}}).$$

In the above, if  $\mathcal{I}_{\Delta''}$  is empty then  $\bigcap_{\mathcal{P} \in \mathcal{I}_{\Delta''}} \mathcal{P}$  is taken to be  $L^1(G, B)$ . Since  $\mathcal{I}_{\Delta''}$  is at most a finite set, and  $M_{\gamma,\phi}$  is a prime ideal for each  $\phi \in$  On the separating ideals of some vector-valued group algebras

 $\Delta(B), \bigcap_{\mathcal{P} \in \mathcal{I}_{\Delta''}}^{\mathcal{P}} \not\subseteq M_{\gamma,\phi}. \text{ Let } f \in \bigcap_{\mathcal{P} \in \mathcal{I}_{\Delta} \cup \mathcal{I}_{\Delta'}}^{\mathcal{P}}. \text{ Choose } g \in (\bigcap_{\mathcal{P} \in \mathcal{I}_{\Delta''}}^{\mathcal{P}} \setminus M_{\gamma,\phi}).$  Then  $fg \in M_{\gamma}$ . Since  $\phi(\hat{g}(\gamma)) \neq 0$  for each  $\phi \in \Delta(B)$ , by the assumption on B,  $\hat{f}(\gamma)$  belongs to every minimal prime ideal of B. Since B is semiprime,  $\hat{f}(\gamma) = \theta$ . Thus  $M_{\gamma} = \bigcap_{\mathcal{P} \in \mathcal{I}_{\Delta} \cup \mathcal{I}_{\Delta'}}^{\mathcal{P}}$ . This implies  $\Im \subset M_{\gamma}$ . This completes the proof of the claim.

For the remainder of the proof, the argument is similar to Theorem 3.3 of [7]. Let  $\Gamma_{\mathcal{M}_{\Delta}} = \{\gamma_1, \gamma_2, \cdots, \gamma_n\}$ . Let  $h \in (G \cap (\bigcap_{i=2}^n M_{\gamma_i})) \setminus M_{\gamma_1}$ . Since there exists a minimal prime ideal  $\mathcal{P} \in \mathcal{M}$  contains  $M_{\gamma_1}$  but not any of the  $M_{\gamma_i}$ 's for  $2 \leq i \leq n$ , such a function h exists. Since  $\hat{h}(\gamma_1) \neq \theta$ , there exists a continuous linear functional  $\lambda$  on B such that  $\lambda(\hat{f}(\gamma_1)) \neq 0$ . Consider the basic open set

$$N = \{ \gamma \in \Gamma : |\lambda(\hat{h}(\gamma)) - \lambda(\hat{h}(\gamma_1))| < |\lambda(\hat{h}(\gamma_1))| \}$$

of  $\Gamma$  containing  $\gamma_1$ . Since G is a noncompact Abelian group,  $\gamma_1$  is not an isolated point in  $\Gamma$ . By the choice of h, the characters  $\gamma_2, \gamma_3, \cdots, \gamma_n$  do not belong to N. Hence there exists a character  $\gamma_0 \in \Gamma \setminus \{\gamma_1, \gamma_2, \cdots, \gamma_n\}$  such that  $\gamma_0 \in N$ . Since  $\Im$  is contained in  $M_{\gamma_0}$ ,  $\hat{h}(\gamma_0) = \theta$ . Hence  $|\lambda(\hat{h}(\gamma_1))| = |\lambda(\hat{h}(\gamma_1)) - \lambda(\hat{h}(\gamma_0))| < |\lambda(\hat{h}(\gamma_1))|$ . This is a contradiction. Therefore  $L^1(G, B)$  does not contain a non-trivial separating ideal.  $\square$ 

The following result extends Theorem 3.3 of [7] (which in turn extends Theorem 5 of [11]) to some semiprime Banach algebras which do not posses the multiplicative identity.

Theorem 4.3. Let G be a noncompact locally compact Abelian group, and B be a commutative semiprime Banach algebra in which every minimal prime ideal is contained in a regular maximal ideal. Then every derivation on  $L^1(G,B)$  is continuous. Also every epimorphism form a commutative Banach algebra onto  $L^1(G,B)$  is continuous.

*Proof.* Obviously follows from Theorem 4.1 and the closed graph theorem.  $\Box$ 

REMARK. If B has the multiplicative identity then every proper prime ideal is contained in a maximal ideal of B. Even if B does not have the multiplicative identity, in most of the algebras every minimal prime ideal is contained in a regular maximal ideal. Therefore the assumption in the above theorem that every minimal prime ideal contained in a regular maximal ideal of the algebra is not too restrictive.

# References

- W. G. Bade and P. C. Curtis, Jr., Prime ideals and automatic continuity for Banach algebras, J. Funct. Anal. 29 (1978), 88-103.
- [2] P. C. Curtis Jr., Derivations on commutative Banach algebras, in Proceedings, Long Beach, 1981, Lecture Notes in Math. (Springer-Verlag, Berlag, Berlin, Heidelberg, New York) 975 (1983), 328-333.
- [3] J. Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. 16 (1977), 493-500.
- [4] H. G. Dales, Automatic continuity: A survey, Bull. London Math. Soc. 10 (1978), 129-183.
- [5] J. Diestel and J. J. Uhl, Vector measures, vol. 15, Math surveys, Amer. Math. Soc., Providence, RI, 1977.
- [6] R. Garimella, On nilpotency of the separating ideal of a derivation, Proc. Amer. Math. Soc. 117 (1993), 167-174.
- [7] \_\_\_\_\_, On continuity of derivations and epimorphisms on some vector-valued group algebras, Bull. Austral. Math. Soc. **56** (1997), 209–215.
- [8] A. Hausner, The Tauberian Theorem for Group algebras of vector-valued functions, Pacific J. Math. 7 (1957), 1603-1610.
- [9] G. P. Johnson, Space of function with values in a Banach algebra, Trans. Amer. Math. Soc. 92 (1959), 411-429.
- [10] M. M. Neumann, Automatic continuity of linear operations in functional analysis, vol. 38, Surveys and recent results II, North-Holland Math. Studies (North-Holland, Amsterdam, New York), 1980, pp. 269-296.
- [11] M. M. Neumann and M. V. Velasco, Continuity of epimorphisms and derivations on vector-valued group algebras, vol. 68, Arch. Math. (Basel), 1997, No. 2, pp. 151-158.
- [12] W. Rudin, Fourier analysis on groups, Interscience, New York, London, 1962.
- [13] A. M. Sinclair, Automatic continuity of linear operators, vol. 21, London Mathematical Society, Lecture Notes Series, Cambridge Univ. Press, London/New York, 1976.

Department of Mathematics, Tennessee Technological University, Cookeville, TN 38505, USA  $\,$ 

E-mail: Rgarimella@tntech.edu