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HOMOLOGY OF THE DOUBLE LOOP SPACE
OF THE HOMOGENEQUS SPACE Sp(n)/U(n)

Youngai CHOI

ABSTRACT. We compute the mod p homology of the double loop
space of Sp(n)/U(n) by the Serre spectral sequence and the Eilenberg—
Moore spectral sequence with the homology operations.

1. Introduction

Let U(n) be the unitary group and Sp(n) the sympletic group. Let
Map*(S*, M) = QF M be the k—fold loop space of a space M, the space
of all the base point preserving continuous maps from S* to M. A map
¢ : §% — Sp(n)/U(n) between Riemannian manifolds is said to be har-
monic if it is the critical point of the energy functional on 225p(n)/U(n)
defined by E(¢) = 3 [5 |dé(z)|*dz. This means that harmonic maps
are two dimensional analogue of geodesics, such as minimal surfaces.
So it is meaningful to study the homology of the double loop space of
Sp(n)/U(n) from the view point of the Morse theory.

On the other hands, consider the space Hol*(5?%, Sp(n)/U(n)) of
all the base preserving holomorphic maps from the Riemannian sphere
5% = C|Joo to the homogeneous space Sp(n)/U(n). Then forgetting
the complex structure, we have the natural inclusion

Hol}(8%,8p(n)/U(n)) — QFSp(n)/U(n)

where k € mo(Q2Sp(n)/U(n)) = Z. By exploiting the inclusion map, we
can obtain the homological information of the space Hol}(S?, Sp(n)/
U(n)) from the homology of Q2Sp(n)/U(n).:
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In these aspects we study the homology of the double loop space
of Sp(n)/U(n). Main tools of the computation are the Serre spectral
sequence and the Eilenberg—-Moore spectral sequence with homology
operations. Throughout this paper the subscript of an element always
means the degree of the element and p always stands for the odd prime.

2. Mod 2 Case

We compute the homology of the double loop space of Sp(n)/U(n)
with Fy coefficients. For (n + 1)—fold loop spaces, there are homology
operations

Q; : Hq(Qn+1X?]F2) - H2q+i(ﬂn+1X.; F2)

defined for 0 < ¢ < n which is natural for (n + 1)—fold loop spaces.
The cohomology of Sp(n)/U(n) with Z coefficients is well-known [1],
[3]. It is torsion free and even—dimensional.

THEOREM 2.1. H*(Sp(n)/U(n)); Z) is

Z[CQ, e ,Czn]/ Z (_1)7:C21;62j,k >1
=2k

In mod 2 coefficients, we get c¢Z; = 0,1 < ¢ < n from the relation.
Hence we have the following.

COROLLARY 2.2. H*(Sp(n)/U(n));F2) is E(c,...,con), where
E(c;) is the exterior algebra on c;.

Since mo(Sp(n)/U(n)) = Z, m(Q2Sp(n)/U(n)) = Z. So each com-
ponent of the space 22Sp(n)/U(n) can be labeled by the integer k € Z
and we denote the k component of the space by Q2Sp(n)/U(n). Since
all components are homotopy equivalent to each other, it is enough
to compute the homology of any component to get the homology of

Q2Sp(n)/U(n).
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THEOREM 2.3. H,(Q3Sp(n)/U(n));F,) is
FalQ30: 0 > 0} @ F2[Qfzei : 1 <i<n—1,a>0].
Here F2[Q%zo : a > 0] = F2[QF[1] % [-2%] : a > 0] where [1] is the image
of the generator in Ho(S°;F2) for the map S® — Q2Sp(n)/U(n) and *
is the loop sum product.

Proof. We have the following morphisonf fibrations:
Q2Sp(n) —— Q3Sp(n)/U(n) —— QU(n)

1 1 |
Q28p —— Q2Sp/U — QU

It is well-known that

H.(QU(n);Fo) =Falys :1<i<n—-1], n>2,

H.(QU;Fa) = Falyg; : ¢ > 1,

H.(928p(n);F3) = Fo[Q%z4i41: 0 < i < n—1],

H,(2Sp;F2) = Fo[zg;41 : 1 > 0],

H.(Q3Sp/U;F) = F2[Qfz2i—2:a > 0,3 > 1} = Fofz; : i > 1].
In order to calculate differentials of the Serre spectral sequence of the
~ top row fibration, we first exploit differentials of the infinite dimensional
case and use the naturality. Consider the Serre spectral sequence for
the bottom row fibration converging to H.(Q35p/U;F2) with

Eo = H,(WU; F2) @ H(Q2Sp; Fa).

Since the homology of the total space is just tensor products of those
of the base and fiber space, we can deduce that the spectral sequence
collapses at E,. Since i, and j, are monomorphism, we can conclude
that the spectral sequence for the upper fibration also collapses at
the F, from the naturality. So it follows that the E.—term for the
H.(Q3Sp(n)/U(n); F2) is

Fg[ygi 1< < ’I’L-—l] ®]F2[Q(f.’1,'4,,;+1 0<1<n~— 1]

However, we have that

H.(Q2Sp/U;Fo) = Fo[Qw2 2 :a > 0,5 > 1] = Fofz; 14 > 1.
Therefore there is a choice of the generators such that
H.(Q2Sp(n)/U(n); F2) = F2[Q}w2 : a > 0,0 <i <n—1]. O
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3. Mod p Case

Now turn to the mod p case. To make basic data, we recall the
followings:
H,(Sp/U;F,) = Fplzaita : it > 0]
H*(QSp/U;]Fp) = E(:L‘4i+1 g > 0)
H,(U;F,) = E(z41:1>0)
H,,(QSp; ]Fp) = ]Fp[a:4¢+2 11 Z 0]
First of all, we study the the Serre spectral sequence for the following
fibration:
QSp —— QSp/U —— U

We have that Ey = H,(U;F,) ® H.(2Sp; F,). From above data we can
obtain following transgressions:

d4i13(Taiv3) = Taito.

The remaining generators {z4;41 : ¢ > 0} survive permanently so that
H,(Q2Sp/U;Fp) = E(z4i41 : © > 0). We consider the following map of
fibrations:

QSp(n+1) —— QSp(n+1)/U(n+1) —— U(n+1)
QSp —_— QSp/U —— U
We also have that

H,(U(n+1);Fp) = E(z2i41 : 0 < < n),
H.(QSp(n + 1);Fp) = Fp[zas42: 0 < i < n).

Now we compute the homology of the loop space of Sp(n+1)/U(n+1).
We divide the computation by two cases on n. First we compute the
Serre spectral sequence for the following fibration:

QSp(2n+1) —— QSp(2n+1)/U(2n+1) —— U(2n+1)

By the naturality of differentials, we get following transgressions from
the infinite dimensional case:
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dai+3(Taiy3) = Tai42,0<i<n—1

So we have that .‘
H,(QSp(2n+ 1)/U(2n + 1); Fp) = E(z4i41: 0 < i < n)

_ ®IFP[:L‘47;+2 n S'L S 2n].
Similarly we can compute the 2n case, so that
H.(Q8p(2n)/U(2n);Fp) = E(z4i41: 0 < i <n—1)
®]Fp[.’l)47;+2 n<i1<2n - 1].
Hence we have the following theorem.

THEOREM 3.1. »
H,(QSp(n+1)/U(n+ 1);Fp) = E(x4i+1: 0< 20 < n)
QFp[Taira :n <2+ 1< 2n+ 1]
To develop further we recall the following result in [4].

THEOREM 3.2.
H*(stU(n +1);Fp) = E(T2jpi-1:0<j<n, j#0 mod p, i > 0)
QFp[ygjpi—2:0< 3 <n, j#0 mod p, p'j > n)
where t is the smallest integer such that p'j > n.

Note that in paper of [4] there are some minor mistakes in the degrees
of some generators. The above statement is corrected form.
We have the following fibration

Sp(n+1) —— SU(2n +2) ————> SU(2n + 2)/Sp(n + 1).

For odd primes, there is mod p cross sections s : SU(2n+2)/Sp(n+1) —
SU(2n + 2) [2] so that we get the following decomposition

SU(2n + 2) ~,y SU(2n + 2)/Sp(n + 1) x Sp(n + 1)

where o~ is the homotopy equivalence localized at p. Hence looping
twice, we get that

Q28U (2n + 2) () 2SU(2n + 2)/Sp(n + 1) x 225p(n +1).

This implies that the mod p homology of 92Sp(n + 1)) is the parts of
direct summands of the mod p homology Q2SU(2n + 2)). So in the
same way as [4], we can obtain the following.
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THEOREM 3.3. H,(2Sp(n +1);F,) is
E(zgjpi_1:j:0dd, 0<j<2n+1, j#0 modp, i >0)
@ Fplysjpi_z:j:odd, 0<j<2n+1, #0 mod p, p'j > 2n + 1]
where t is the smallest integer such that p'j > 2n + 1.
Now we work on the homology of our target space.

THEOREM 3.4.
H.(23Sp(n+ 1)/U(n + 1);Fp) = Fpz4: : 0 < 2 < 7
®FE(zgjpi_y:j:0dd,n <j<2n+1,5%# 0 mod p,i > 0)
®Fplyojpi—2:j:0dd,n < j<2n+1,5#0 mod p,i> 1]
QFE (T prti_1 1§ :0dd,0 < j<n,j#0 modp,n<jp*<2n+1,i>0)
®Fp[yajprti_g:j:0dd,0 < j<n,j#0 modp,n < jp*¥ <2n+1,i>1).

Proof. Before the main argument, it is necessary to consider the
infinite dimensional case. The followings are well-known:
H,(Q3Sp/U;Fp) = Fplza 1 i > 1]
H*(QQU;]FP) = IF,,[;L'Q,- ) Z 1]
H,(28p;F,) = E(z4i41 : 1 > 0)

In the Serre spectral sequence converging to H,(Q%Sp/U;F,) for the
following fibration

Q28p —— Q2Sp/U — QuU,

we can make an analysis of the behavior of differentials from the above
homology information. Now every differential from each generator of
the form z4; for ¢ > 1 is trivial so that they become permanent cycles,
and differentials from other generators are detected as follows. If some
Tor happens to transgress to xox_1, then differentials behave after the
following pattern:

i

d(xgk) = Tkpi—1> 12> O’

d(zokp) = x2k—1x12)]:1,

— p—1_p-1
d(kap2) = T2k-1To Topy »

’ -1 p—1
d(Tokpt) = Top—12hy Tyt £>1.
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Now to get H.(Q3Sp(n+1)/U(n+1);F,), we take into consideration
of the Serre spectral sequence for the fibration

028p(n +1) —— Q2Sp(n +1)/U(n+1) —— QoU(n+1).

From the naturality, we gef that each generator of the form x4; becomes
a permanent cycle for 0 < 2i < n. Since the degrees of all generators
in Hy(QU (n + 1);F,) are less than or equal to 2n, the following parts,

E(zgjpi-1:j:odd, n<j<2n+1, j%# 0 modp, i >0)
OFplyojpi—g:j:odd, n<j<2n+1, 5% 0 modp, i >1],
are surviving permanently from the dimensional reason.

Using differentials of the infinite dimensional case and the informa-
tion of the Ey term of the Eilenberg—Moore spectral sequence for the
path-loop fibration converging to H,(Q2Sp(n + 1)/U{n + 1)), we can
compute the other differentials as follows. For an odd j with the con-
dition that 0 < j < n and j # 0 mod p, we divide two cases:

(1) there is no k > 1 such that n < jp* < 2n + 1;
(2) there is some k > 1 such that n < jp* < 2n + 1.

For the case (1), the following parts of H,(Q2Sp(n + 1); Fy),
E(xgjpi_l 11> 0) ®Fp[y2jpi__2 ipti > 2n 4+ 1},

are targets of the differentials, so that they do not survive.
For the case (2), even though E(25;,i-1 : 1 2> 0) can not survive,

Fplyojpi—2 10%5 > 2n+ 1]
survive permanently. Moreover in that case
i -1 i _ e -1
$2jpi—1(x12)j)p (‘rgjp)p Lo (itgjpk—a )p

survives for any ¢ > 0, so that we represent it by x4, x+i_,. Hence we
get the result. ()

In fact, each result in Theorem 2.3 and Theorem 3.4 is consistent with
the result of the Ey term of the.Eilenberg-Moore spectral sequence for
the path-loop fibration converging to the homology of the double loop
space.
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