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MIXED VOLUMES OF A CONVEX BODY
AND ITS POLAR DUAL

Y. D. CHAIT* AND YOUNG SO0 LEE

ABSTRACT. In this paper, we obtain some geometric inequalities for
mixed volumes of a convex body and its polar dual. We also develop
a lower bound of the product of quermassintegral of a convex body
and its polar dual and give a lower bound for the product of the dual
quermassintegral of any index of centrally symmetric convex body
and that of its polar dual. ’

1. Introduction

Polar dual convex bodies are mainly important in Minkowski geometry
[2]. Firey [3] showed that the mixed area of a plane convex body and
its polar dual is at least 7. Sangwine-Yager [6] obtained integral lower
bound for certain mixed volumes by using a method of generalized outer
parallel sets of a compact set. As a consequence, she generalized Firey’s
result to the higher dimensions. Ghandehari {4] found a lower bound
of W,_1{K)W,_1(K*) for all convex bodies K. However, the problem
of finding the lower bound of the product W;(K)W;(K*) for all convex
bodies, for each %, is not solved completely yet. See Bambah [1], Firey
(3], Lutwak (5], and Ghandehari (4] for partial results.
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In this paper, we prove that for a convex body K and its polar du:
K*,
. n—1
Wi(K)Wi(K*) > (7) w?

i
Te

where 7 = mz?c{ p; Ir;(p) is the radius of the largest ball contained in
e pE

K and centered at p and r.(p) is the radius of the smallest ball contain-
ing K and centered at p}. ‘
We also give a lower bound for the product of the dual quermassin-

tegral of any index of centrally symmetric convex body and that of its
polar dual, that is, for a convex body K and its polar dual K*

I;Vz(}’{)I/’Vz(‘[{*) > <Q> w? t=0,1,---,n.

n’
Te

2. Preliminaries

By a conver body in E™, n > 2, we mean a compact convex subset of
E™ with nonempty interior. A set E is said to be centered if —z € F
whenever z € E, and centrally symmetric if there is a vector ¢ such
that the translate £ — ¢ of E by —c is centered. Let B be the closed
unit ball in E*. The inradius, and outradius of a convex body K with
respect to B are defined to be the largest scalar for which a homothet
of B is contained in K, and the smallest scalar for which a homothet
of B contains K, respectively. We denote inradius of K by r;,(K) and
outradius of K by 7, (K), respectively. For each direction u € S™~!
where S™! is the unit sphere centered at the origin in E", we define the
support function h(K,u) on S™! of the convex body K by

h(K,u) = sup{u - z|z € K}
and the radial function p(K,u) on S™! of the convex body K is
p(K,u) =sup{\ > 0] u € K}.

The polar dual of a convex body K, denoted by K*, is another convex
body defined by

K*={y|lz-y <1lforall z € K}.
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Mixed volumes of a convex body and its polar dual

The polar dual ha_s the following well known property:
WEK* ) = 1/p(K,u) and p(K*,u) = 1/h(K,u).
The outer parallel set of K at the distance A > 0, K, is given by
Ky=K + \B. |

Then the volume V(K,) is a polynomial in A whose coefficients W;(K)
are geometric invariants of K:

(1) VK+XB)=Y" ( :f )m(K)x.

i=0
The functionals Wi(K), ¢ = 0,--- | n, are called the ith quermassiﬁtegm‘ls
of K. The followings are true:

Wo(K) = V(K), nWi(K) = S(K); Wa(K) = ws,

where V(K ) and S(K) are the volume and surface area of K, respectlvely
and w, is the volume of the unit ball B in E™. If Kj,--- , K, are convex
bodies in E™ and Ay, - - - , )\, range over the positive real numbers then

the volume of \{ K7 + - + MK, is a homogeneous polynomial, of degree
,dn AL, e, A That is,

(2) V(A1K1+~--+/\,.K,) =Y V(Ki, - K -+ Ny,
where il,--' , i, range independently over 1,---,7. The coefficients
V(Ky, -+, K;,) depending on Kj,--- , K), are symmetric in their vari-
ables. Thls coefficient is called mized volumes of K; -+, K; . It follows
from (1) and (2) that
(3) . Wi(K)=V(K,--- ,K,B,--- ,B).

A

n—1 2

Now we‘:need to introduce another interpretation of quermassintegrals
in terms of surface area measure. Let K be a convex body in E™. For
each € B(E™), a Borel measurable set in E", o(K, ) is the set of all
u € S™ ! such that u is an outer normal to K at the boundary point
of KN B. For u € B(S™), a Borel set in $"!, 0~1(K,u) is the set
of boundary points of K at which there exists an outer normal in w.
Then for all convex body in E™, it is possible to show the existence of
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the measure denoted by S,_i(K,v) on B(S™!) which is the (n — 1)-
dimensional Hausdorff measure of ¢~ (K, ). Then it is well known that

1
(@) V(Kpye ) Koot Kn) = / h(K o, 0)dS(Ky, -+ s Knor, )
Sn—l

n

and

(5) ot (XK u) =D -+ D S(Kipy e Ky Wi Ay
i=1 =1 ip_1=l

Introducing the notation:

Si(Kau) :S(K’ aK;B)"' )B;u)a 7'30,1’ ,’I’L—l,
e e’ N e’

% n—i—1

representations for the quermassintegrals are

1
Wi(K) = E/ h(K,u)dSn-i—1(K, u), i=0,1,---yn—1,
gn-1
(6) _ ! dS,_;(K,u), 1=1,--+,n.
n Sn—l .

Let f be a nonnegative measurable function on 871 for which the
integrals in (7) are finite. At each boundary point of K at which u is
an outer normal add 6f(u)u, 0 < § < t,t > 0. The resultant (probably
nonconvex) set will be called a generalized outer parallel set of K at
distance ¢ denoted by K. It follows from a result of [9] that

0 Vi) =V =23 (1) [ rwrasaocw,

n 1
i=1

where the S; are the area measures.

Sangwine-Yager [6] used (7) to obtain an integral formula as a lower
bound of a mixed volume: If K and L are convex bodies in E™ and the
origin is in the interior of L, then

(8) VKL L) >~ / oL, )8 (K, u).
. s"_l

n
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Mixed volumes of a convex body and its polar dual

Let K; be a convex body in E™ with o € K;, 1 < j < n. Then we
define the dual mized volumes V(Ky,--- , K,) by »
. 1
© VLK) = 1 [ K)ol
s A

where du signifies the area element on S™1. Let
V(Kl’K2) = (Kl’ : >K11>\I{27 te 7K%)

v N\

n—t %
The dual quermassintegrals are the special dual mixed volumes defined
by

Wi(K) = Vi(K, B).
Note that Vp(K, B) = V(K) is the volume of K, while ¥, (K) = w, does
not depend on K.

3. Main Results

In the following theorem, we develop a lower bound for Wi (K)W;(K*)
for a convex body K in E™.

- THEOREM 1. Let K be a convex body in E". Then the quermassin-
tegrals Wi(K) and Wy(K*) satisfy

WU(E)W(K") > (g)h—lw,%

where [} = max{ r'(ég [ri(p) is the radius of the largest ball contained in

K and centered at p and r(p) is the radius of the smallest ball contain-
ing K and centered at p}.

Proof. By (8), we have
VB.K K 2% [
n gn-1
and
V(B,K*,--- ,K*) > %/ o(K*, u)" 'du
m—1
where we note that S;(B,u) =
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Multiply both sides of the above two inequalities and use p(K*, u) =
1/h(K,u) and the Cauchy-Schwartz inequality to obtain
n’V(B,K,--- ,K)V(B,K*,--- ,K")

() (] e
> ( VoK up du) 2

~ s \I/W 2

§ (“) (L)

()

where O,_; is the (n — 1)-dimensional volume of the unit sphere S™1.
The last inequality follows since h(K,u) < 7. and p(K,u) > r; and
the equality follows from (6). 0

As a special case of Theorem 1 we obtain the following result.

COROLLARY 1. Let K be a centrally symmetric convex body in E™.
Then

Wi (K)WA(K") > ( Tin )Mw?

n
Tout

where 13, and 7., are the inradius and outradius of K, respectively.

Proof. 1t is obvious, because of = ;T—mt- for centrally symmetric convex
body. 0

The Santalé point of K is often defined as the unique point in the
interior of K with respect to which the volume of the polar dual is a
minimum.

Ghandehari [4] gave a upper bound for the product of the dual quer-
massintegral of any index and that of its polar dual:

Assume K is a convez body in R™ and K* is the polar dual of K with
respect to Santalé point. Then

Wi(K)Wi(K") < W}

776



Mixed volumes of a convex body and its polar dual

Now we obtain a lower bound for the product. of the dual quermass-
integral of any index of a convex body and that of its polar dual.

THEOREM 2. Let K be a convex body in E". Then the dual quer-
massintegrals W;(K) and W;(K*) sat1sfy

Wi(K)Wi(K") > (~) 2 =01
Proof. By (9), we have
(K, B) = ! / oK,y
aﬁd _ ‘ .
Vi(K*, B) = % /S p(K*, w)""*du.

Multiply both sides of the above two inequalities and use p(K*, u) =
1/h(K,u) and the Cauchy-Schwartz inequality to obtain

VK, BYVi(K*, B) = ( /S K, u)"~idu) ( / o, u)";’du)

(/ EE )

Y

v
TN
o3 |3
v
/‘\
5~ ==
!

g
\_/

The last inequality follows from ff(g ”g >k Usmg On-1 = Ny, we obtain

the desired result. O

COROLLARY 2. Let K be a centrally symmetric eonvex body with
center o in E™ and K* polar dual of K. Then

Wi KYW;(K*) > (”) w? i=0,1,---,n

Tout

where T4, T are the inradius, outradius of K, respectively.
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Proof. 1t is obvious, since 2 = fﬂl for a centrally symmetric convex
€ L2}
body. a
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