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WEAKLY LAGRANGIAN
EMBEDDING S™ x S INTO C™t"

YANGHYUN BYUN AND SEUNGHUN YI

ABSTRACT. We investigate when the product of two smooth man-
ifolds admits a weakly Lagrangian embedding. Assume M, N are
oriented smooth manifolds of dimension m and n, respectively, which
admit weakly Lagrangian immersions into C™ and C". If m and n
are odd, then M x N admits a weakly Lagrangian embedding mto
C™t", In the case when m is odd and n is even, we assume fur-
“ther that x{IN) is an even integer. Then M x N admits a weakly
Lagrangian embedding into C™ ™. As a corollary, we obtain the re-
sult that S71 % 872 x ... x S7k, k > 1, admits a weakly Lagrangian
embedding into C*1 172+ +7k if and only if some n; is odd.

1. Introduction

In the previous paper ([2]), we have shown that S™ x S™ admits
a weakly Lagrangian embedding into C™*" under the condition that
- n =1 or 3. It has been observed also that if both m,n are even then
5™ x S™ does not admit any weakly Lagrangian embedding into C™*™.
For the case when one of m,n is odd while it is neither 1 nor 3, the
question was left open.

In this paper the remaining case has been resolved by the following
(see section 3): ' ‘

THEOREM 1.1. Let M, N be smooth closed manifolds of dimension
m and n, m,n > 1, respectively. Assume M, N admit weakly La-
grangian immersions into C™ and C", respectively. If both m, n are
odd, then M x N.admits a weakly Lagrangian embedding into C™*™.

In the case that m is odd and n is even, we assume further that x(N) is

Received April 20, 1999.

1991 Mathematics Subject Classification: 53C40. _

Key words and phrases: weakly Lagrangian embedding, product manifold, reg-
ular homotopy. -



Yanghyun Byun and Seunghun Yi

an even integer. Then M x N admits a weakly Lagrangian embedding
into C™*™,

In fact, as an immediate consequence, we have:

COROLLARY 1.2. If m is odd, then S™ x S™ admits a weakly La-
grangian embedding into C™1".

More generally the following holds:

COROLLARY 1.3. S™ x 8™ x ... x 8™ n; > 1,4 = 1,2,--- ,k,
k > 2, admits a weakly Lagrangian embedding into C™1tm2++nx jf
and only if some n; is odd.

This result of course provides a complete answer to the problem of
weakly Lagrangian embedding the product of more than one spheres
into a complex plane of the same dimension. Note that the product
admits a Lagrangian embedding if and only if one of the spheres is
S': If M™ admits a Lagrangian immersion into C™ and N™ admits a
Lagrangian embedding into C™ then M™ x N™ admits a Lagrangian em-
bedding into C™*™ (6.2.2, [1]) and there is no closed simply connected
Lagrangian submanifold in C™ ([5]).

Note that we now have examples in which neither M™ nor N™ admits
weakly Lagrangian embedding into C™ or into C™ while M x N does into
C™*": According to Kawashima ([6]), S™ admits a weakly Lagrangian
embedding into C™ if and only if n is 1 or 3. Consider the case when
M=S5mand N = S" where misodd, m >3 andn =2orn > 3.
In the totally real embedding category such examples do exist (cf. [8])
while in the Lagrangian embedding category no such example has been
known so far.

The main tool for the proof of Theorem 1.1 is Theorem 2.1 below,
which provides a product formula for self-intersection numbers. In fact
Theorem 2.1 is a part of a theorem in another paper ([3]). However
for the convenience of the reader, we provide a sketch of the proof in
section 4 below.

2. Basic notions and facts

Two subbundles 1y and 7; of a vector bundle £ over a topological
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space M is said to be homotopic if there exists a subbundle f of £ x [
such that flpx{e} =70 and Apx1) =m-

A symplectic form on a vector bundle is a nondegenerate two form
on it. A vector bundle of finite rank is referred to as a sympleetic vector
bundle if it is considered with a fixed symplectic two form. Note that
a symplectic vector bundle should be of even rank. A subbundle 7 of
a symplectic vector bundle £ is a Lagrangien subbundle if 2 (rank n)
= rank & and the vestriction of the symplectic form to # is the zero
form. A subbundle n of a symplectic vector bundle ¢ is called a weakly
Lagrangian subbundle if n is homotopic to a Lagrangian subbundle of
&.

Now let f : L — M be an embedding (resp. immersion) of a smooth
manifold L into a symplectic manifold M with a symplectic structure
w. We'call f a Lagrangian embedding (resp. immersion) if the tangent -
bundle TL of L is a Lagrangian subbundle of the symplectic vector
bundle f*T'M (with the symplectic form f*w). Similarly, f is a weakly
Lagrangian embedding (resp. immersion) if T'L is a weakly Lagrangian
subbundle of f*T M.

We will consider C™ with the usual symplectxc structure. A La-
grangian embedding or a weakly Lagrangian embedding will be under-
stood as ‘into C™’ unless otherwise specified. ' ‘

Note that the notion of weakly Lagrangian embedding (resp. im-
mersion) is invariant under regular homotopy. That is, if fo and f, are
embeddings (resp.. immersions) homotopic through immersions and fy
is a weakly Lagrangian embedding (resp. immersion), then f is also
such.

An immersion f : M™ — P?™ is referred to as completalymgular if
it has no triple points, that.is, |f 1y} < 2 for any y € P, and is self-
transverse. If f : M — P is a completely regular immersion, one may
define the intersection number I(f) of f as follows: (i) For the mod 2
intersection number, one defines I(f) € Z; as the number of the double
points mod 2. (ii} Assume that M, P are oriented and m is even. Then
one may define the integral intersection number as follows: Let r =
f(p) = f(p'), p # P, be a double point of f. Let v = (v3,v3,* ,Vm),
v' = (v}, vy, ,v},) be sequences of tangent vectors which represent
the orientation of M at p and p/, respectively. If the sequence of tangent
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vectors (dfv, dfv') = (dfvi, dfva, - - - , df vm, dfv],dfvh, - - - ,dfv]) repre-
sents the orientation of P at r, write £, = +1 and, otherwise, write
€r = —1. Note that ¢, remains unchanged even if we interchange p, p'.
Define I(f) = 3, &, € Z, where r runs through all the double points
of f.

If f,g are completely regular immersions which are regularly homo-
topic to each other, then we have I(f) = I(g): According to J. Cerf
([4]), for generic regular homotopy, the double points vary continuously
except at a finite set of points at each of which a pair of double points
appear or disappear. If m is even, the two have opposite values for ¢,.
Furthermore, since every immersion is regularly homotopic to a com-
pletely regular immersion, it follows that I(f) is well-defined for any
immersion f.

Now assume m > 3 and P is simply connected. Let I(f) denote
the mod 2 intersection number if the dimension of M is odd or M
is unorientable and, in the remaining case, the integral intersection
number. Then I(f) vanishes if and only if the regular homotopy class
of f can be represented by an embedding, which is a consequence of
the Whitney trick (cf. [3]).

The following is a part of Theorem A, [3].

THEOREM 2.1. Let f : M™ — P?™ g: N™ — Q2" be immersions
where M, N are closed smooth manifolds and P,(Q, smooth manifolds.
Then, for the mod 2 intersection numbers, we have :

I(f x g) = x(ve)I(g) + I(f)x(vg) € Zy ,

where x(-) is the Euler characteristic in Zy-coefficients. Furthermore,
assume M, N, P, Q) are oriented, and both m,n are odd. Then, for the
integral intersection numbers, we have

I(fxg)=0€Z.
The sketch of proof for Theorem 2.1 will be provided in section 4.

3. Proofs

Proof of Theorem 1.1. If m+n = 2, then M x N admits a Lagrangian
embedding. Therefore we may assume m +n > 3.
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Let f: M™ — C™, g: N* — C" be weakly Lagrangian immersions.
If m and n are odd, then, by Theorem 2.1, we have I(f x g} =0. This
implies that f x g is regularly homotopic to an embedding. Now since
being weakly Lagrangian is invariant under regular homotopy, M x N
admits a weakly Lagrangian embedding into C™*".

If m is odd, n is even, then x(M) = 0 (see Lemma 4.3 below).
Furthermore, by assumption x(N) is an even integer. Now note that
vp & (=1)™m=D2TM, y, = (=1)"D/2TN (see [2]). Therefore,
I(f x g) = x(vs)I(g) + I(f)x(vg) = 0 € Zy. We conclude that f x g is
regularly homotopic to an embedding. Thus M x N admits a weakly
Lagrangian embedding into C™*". O

Proof of Corollary 1.2. For n > 1, S™ admits a (weakly) Lagrangian
immersion into C™ with only one double point ([9], p. 26). Now our
statement is an immediate consequence of Theorem 1.1. a

Proof of Corollary 1.3. Assume n; is odd without loss of generality.
Since each S™,i = 1,2, .- - , k, admits a Lagrangian immersion into C™,
it follows that §™2 x S™ x ... x S™ admits a Lagrangian immersion
into Cn2tnst+nk Therefore we may apply Theorem 1.1 to conclude
that §™ x ™2 x - .. x S™ admits a weakly Lagrangian embedding into
Crtnztotng

On the other hand, if all n; are even, then x(S™ x §"2 x .- x §™) s
0. Thus S™ x §"2 x --- x §™ does not admit any weakly Lagrangian
‘embedding into C™1 12t 7k (see [2]). O

4. Sketch of proof for Theorem 2.1

This section is entirely devoted to a sketch of proof of Theorem 2.1.

We may assume f, g are completely regular immersions.

Then as the first step we consider the case each of f, g has only one
double point. Furthermore, we assume that both vy, v, admit nowhere

vanishing sections. Then the following holds, which is a special case of
Theorem 2.1.
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PRroPOSITION 4.1. The product f X g is regularly homotopic to a
completely regular immersion with exactly two double points. Further-
more, assume M, N, P,Q are oriented and m + n is even. Then the
signs of the two double points differ from each other by multiplication

by (-1)™.
The proof depends the following.

LEMMA 4.2. There is a smooth regular homotopy f; : M — P,
t € I, such that fo = f and the following conditions hold
(i) ft is a completely regular immersion with exactly one double pair
{p+,p}} for each t,
(ii) the map I x {0,1} — M which sends (t,0) to p; and (t,1) to p} is a
smooth embedding,
(iii) ‘fe(z) = fs(v), (z,t) # (y,5)’ implies that (z,y) = (ps,p}) or
(zay) = (pfs,pt)’ and
(iv) f: meets f, transversely if t # s.

We omit the proof of the above lemma which is rather technical.
However the lemma itself and its proof is motivated by the simple one
dimensional example, as illustrated below.

il

!

-]
-]

Proof of 4.1 modulo 4.2. Let f;, {p:, p,} be as in Lemma 4.2 and also
let gt : N — Q, t € I, be a smooth regular homotopy for g satisfying
the conditions of Lemma 4.2 with double pairs {g:, ¢, }-
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Choose a smooth function ¢ : M — I which is constantly 1 on
a neighborhood of {p:|t € I} and constantly 0 on a neighborhood of
{pijt € I}. Likewise choose a smooth function v : N — I satisfying the
same condition for the two sets {q|t € I'}, {q}|t € I}.

Then we define a homotopy Ay : M x N -V x W, tel, by

At(ma y) = (ft¢(y)(x)7gt<p(x)(y)) .

Then it is straightforward to see that A, is a smooth homotopy through
immersions such that Ag = f x g. .

We must show that A; = A has only two double points.

Assume A(z,y) = A(2',y) and (z,y) # (2/,7’). Then we have z#az
ory #y'.

First consider the case z # z'. Then we have from fy,)(z) =
f¢(y/)(.’1,‘,) that

(IL‘, -"7/) = (pd:(y’)’p;b(y)) or ((Z?, ml) = (p':b(y/),pz,b(y)) .

Assume (z,2) = (py(y), Ply(yy)s it follows that o(z) = 1,¢(z') =

and that g1(y) = go(y’), which means that (y,y’) is (go,q}) or (Qo,ql)

If (y,4') = (90, 91), then (z,z') = (po, py) and, if (y,y') = (¢4, q1), then
(z,2') = (p1,pp). Thus we have in this case as the double pairs for A

{(o, ), (11, 01)} {(pl,qé)?(pé',qx)} :

Assume (z,z') = (p;!}(y, ) Py(y)) and proceed similarly as in the above.
Then we obtain the same two double pairs for A as in the above.

Now assume y # y'. Then, from g,(;)(y) = gy(2)(¥’), We may easily
infer that ¢(y) # ¥(y'). Then, from fy(,)(x) = fy)(z'), we conclude
that = # z’. Thus this case reduces to the case when r # /.

We conclude that {(po,40), (p1,91)}, {(p1,90),(Po,21)} are the only
two double pairs for A.

That A is self-transverse follows from the fact that fo , f; are trans-
verse to each other as well as gy, g1 together with the fact that ¢, ¥
are constant on each of some neighborhoods of p;, v, ¢:,¢},2 = 0, 1.

Finally we prove the last statement of the proposition.
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Let vy = (V1,t,92,"** ,Um,t)s Vi = (V14,Vh¢, " ,Umy) and wy =
(W1, W2ty s Wnyt), Wy = (W4, Whe,- -, Wy, ) e sequences of vec-
tors, continuously parameterized by ¢ € I, representing the given ori-
entations of M and N at p., p; and at g, g}, respectively.

Let e(w) be 1 or —1 for each sequence w of independent 2(m + n)
tangent vectors in T(, )P X @, (z,y) € P x Q, according to whether or
not it represents the orientation of P x @), which is non other than the
product orientation.

Then e(dfivo, dgiwo, df vy, dgw}), e(dfve, dgrwy, dfivg, dgw:) are con-
stant for ¢t € I and, by the usual sign convention, we have

e(dfvo, dgwo, df vy, dgwg) = (—1)2mn+”2€(dfvo, dgwy, df vy, dgwo) .
Note that 2mn + n2 = n mod 2. Thus we conclude that
e(df1vo, dgrwo, df vy, dgwy) = (=1)"e(dfv1, dgiwy, dfivg, dgw:) -

Note that the left hand side of the equality is the intersection number
of A at A(pg, qo) = A(p), q1) and the right hand side is the intersection
number at A(p1,qp) = A(pp,q1). These observations also proves the
last statement of the proposition. O

Now we observe the following:

LEMMA 4.3. Let m be a positive odd integer. Then any orientable
vector bundle of rank m over an orientable manifold M™ admits a
nowhere vanishing section.

Proof. The Euler class of an oriented vector bundle of an odd rank
is 2-torsion (cf. 7], p. 98). Since H™(M;Z) has no torsion, this means
the Euler class of the bundle vanishes. However the Euler class is the
exact obstruction for an oriented vector bundle in concern to admit a
nowhere vanishing section. This completes the proof. O

Then Theorem 2.1 is an immediate consequence of the following:
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PROPOSITION 4.4. Let f : M™ — P g : N™ — Q%" be com-
pletely regular immersions with respective double points ry,72,--+ € P,
81,82, - € Q. Assume there are sections o : M - vy and 3 :
N - ug which meet the zero sections transversely, respectively, at
a, a2, - € M, {a;,az, N f-l{')”l,'rz, } = {, and at bl,bz,' - €
N {b17b2) }mg 1{81,32, } 0. Then

(a) fxg: M x N — P x @ is regularly homotopic to a completely
regular immersion A which has, as its double points, two for each of the
‘ordered pairs (r;,$;) and one for each of (ax, s;), (ri,b), all of which
.are distinct among themselves.

Furthermore, assume both m, n are odd and M, N, P,Q are oriented.
Then we have that
(b) if z; ;,x; ; are the two double points of A corresponding to each

of (rs,55), we have €4, ; = ~€4 L

In fact the proof of the above is a slight modification of Proposition

4.1 exploiting the following generalization of Lemma 4.2 for which we
also omit the proof:

LemMA 4.5. Let f: M — P, 1,79, € P,a: M — vy, a1,a9, -
€ M be as in 4.2. Then there is a smooth regular homotopy fi: : M —
P, t eI, such that fo = f and satisfying the following conditions

(i) ft is a completely regular immersion with exactly one double pair

{pi,t, 0} } for eacht € I and for eachi=1,2,---,

(ii) the map I x {0,1} x {1,2,---} — M which sends (t,0,%) to p; ; and

(t,1,i) to p}, is a smooth embedding, '

(i) ‘fu(@) = fo(u), (@,8) # (v,5)’ implies that (@,y) = (Pi,Ply) OF

(z,y) = ()5 Pizt), for some i = 1,2,---, or & = y = a;, for some

j = 1’ 27 e 7’

(iv) and f; meets f; transversely if t # s.
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