CONSTRUCTIONS FOR SPARSE ROW-ORTHOGONAL MATRICES WITH A FULL ROW

GI-SANG CHEON, SE-WON PARK AND HAN-GUK SEOL

ABSTRACT. In [4], it was shown that an n by n orthogonal matrix which has a row of nonzeros has at least

$$(\log_2 n + 3)n - 2^{\lfloor \log_2 n \rfloor + 1}$$

nonzero entries. In this paper, the matrices achieving these bounds are constructed. The analogous sparsity problem for m by n row-orthogonal matrices which have a row of nonzeros is conjectured.

1. Introduction

At the 1990 SIAM Linear Algebra meeting, M. Fiedler asked:

How sparse can an n by n orthogonal matrix (whose rows and columns cannot be permuted to give a matrix which is a direct sum of matrices) be?

The assumption precluding direct sums is necessary, since otherwise the answer is trivially n. Fiedler’s question is answered in [1] (see also [5]), where it is shown that each n by n orthogonal matrix which is not direct summable has at least $4n - 4$ nonzero entries, and that for $n \geq 2$, there exist such orthogonal matrices with exactly $4n - 4$ nonzero entries. Recently, the n by n orthogonal matrices with exactly $4n - 4$ nonzero entries were constructed in [2]. The analogous sparsity problem for m by n row-orthogonal matrices under two natural notions of irreducibility which extends the work in [1, 5] was studied in [3].

And also, it was studied in [4], the question of how sparse an n by n orthogonal matrix which has a column of nonzeros can be. In

Received August 24, 1998.

1991 Mathematics Subject Classification: Primary 05A15; Secondary 65F25.

Key words and phrases: sparse orthogonal matrix, row-orthogonal matrix.
particular, it was shown that such an n by n orthogonal matrix has at
least

$$((\lceil \log_2 n \rceil + 3)n - 2^\lfloor \log_2 n \rfloor + 1)$$

(1)

nonzero entries, and matrices achieving these bounds are constructed and characterized, and are related to orthogonal matrices arising from the Haar wavelet.

Note that if A is an n by n orthogonal matrix with a row of nonzeros then A has also at least the number of nonzero entries in (1).

In this paper, we get another constructions for the n by n orthogonal matrices which have a full row and have exactly nonzero entries in (1), where a vector is full if each of its entries is nonzero. Furthermore, the analogous sparsity problem for m by n row-orthogonal matrices with a full row is conjectured.

For a matrix A, we denote the number of nonzero entries in A by $\#(A)$.

2. Constructions for the sparsest orthogonal matrices with a full row

An m by n matrix is row-orthogonal provided each of its rows is nonzero, and its rows are pairwise orthogonal.

We begin by describing a way to build row-orthogonal matrices from smaller row-orthogonal matrices. Let

$$X = \begin{bmatrix} \hat{X} \\ x^T \end{bmatrix}$$

be an s by t row-orthogonal matrix and let

$$Y = \begin{bmatrix} y^T \\ \hat{Y} \end{bmatrix}$$

be an k by l row-orthogonal matrix, where \hat{X} is $(s - 1)$ by t matrix and \hat{Y} is $(k - 1)$ by l matrix. Define $X \diamond Y$ to be the $(s + k - 1)$ by $(t + l)$ matrix

$$X \diamond Y = \begin{bmatrix} \hat{X} & O \\ x^T & y^T \\ O & \hat{Y} \end{bmatrix}.$$
Certainly, $X \diamond Y$ is a row-orthogonal matrix. We can extend this construction to use any number of row-orthogonal matrices by defining $X \diamond Y \diamond Z$ as $(X \diamond Y) \diamond Z$. This construction can be used in a recursive manner to construct m by n row-orthogonal matrices.

Now, we describe a way of constructing an n by n orthogonal matrices having a full row and exactly $(([\log_2 n] + 3)n - 2^{[\log_2 n]} + 1$ nonzero entries. This is a different manner from the one used in [4].

Lemma 2.1. Let

$$X = \begin{bmatrix} \hat{X} \\ x^T \end{bmatrix}, \quad \text{and} \quad Y = \begin{bmatrix} y^T \\ \hat{Y} \end{bmatrix}$$

be an r by r orthogonal matrix and a s by s orthogonal matrix respectively where \hat{X} is $(r - 1)$ by r matrix and \hat{Y} is $(s - 1)$ by s matrix. Then

\begin{equation}
A = \begin{bmatrix} X & Y \\ x^T & -y^T \end{bmatrix}
\end{equation}

is an n by n row-orthogonal matrix where $r + s = n$. Thus the matrix, \hat{A}, obtained from A by normalizing the row r and the row n of A is an n by n orthogonal matrix with the same zero pattern as A.

Proof. Since $X \diamond Y$ is an $(n - 1)$ by n row-orthogonal matrix, it is sufficient to show that the row r and the row n of A are orthogonal each other. Indeed,

$$[x^T \ y^T][x^T \ -y^T]^T = ||x^T||^2 - ||y^T||^2 = 1 - 1 = 0.$$

Thus the proof is completed.

Note that if both x^T and y^T in Lemma 2.1 are full rows then \hat{A} is an n by n orthogonal matrix with a full row.

Throughout in this paper, we define $\rho(n)$ by

$$\rho(n) = ([\log_2 n] + 3)n - 2^{[\log_2 n]} + 1.$$
Theorem 2.2. Let
\[X = \begin{bmatrix} \hat{X} \\ x^T \end{bmatrix} \]
be an \(r \) by \(r \) orthogonal matrix with the full row \(x^T \) which has \(\rho(r) \) nonzero entries, and let
\[Y = \begin{bmatrix} y^T \\ \hat{Y} \end{bmatrix} \]
be a \(s \) by \(s \) orthogonal matrix with the full row \(y^T \) which has \(\rho(s) \) nonzero entries, where \(r + s = n \). If
\[2^{\lfloor \log_2 n \rfloor - 1} \leq r, s \leq 2^{\lfloor \log_2 n \rfloor} \]
then
\[A = \begin{bmatrix} X & Y \\ x^T & -y^T \end{bmatrix} \]
is an \(n \) by \(n \) row-orthogonal matrix with a full row which has \(\rho(n) \) nonzero entries. Thus the matrix, \(\hat{A} \), obtained from \(A \) by normalizing the row \(r \) and the row \(n \) of \(A \) is an \(n \) by \(n \) orthogonal matrix with the same zero pattern as \(A \).

Proof. There exist \(r \) and \(s \) satisfying (3) and \(r + s = n \), since we may take \(r = \lfloor \frac{n}{2} \rfloor \) and \(s = \lfloor \frac{n+1}{2} \rfloor \). From Lemma 2.1, \(A \) is an \(n \) by \(n \) row-orthogonal matrix with a full row. It is easy to show that
\[\begin{cases} \lfloor \log_2 r \rfloor = \lfloor \log_2 s \rfloor - 1 = \lfloor \log_2 n \rfloor - 1 & \text{if } n = 2^k - 1, \\ \lfloor \log_2 r \rfloor = \lfloor \log_2 s \rfloor = \lfloor \log_2 n \rfloor - 1 & \text{otherwise.} \end{cases} \]
Thus if \(n \neq 2^k - 1 \) then
\[\#(A) = \#(X) + \#(Y) + \#(x^T - y^T) \]
\[= (\lfloor \log_2 r \rfloor + 3)r - 2^{\lfloor \log_2 r \rfloor + 1} + (\lfloor \log_2 s \rfloor + 3)s - 2^{\lfloor \log_2 s \rfloor + 1} + n \]
\[= (\lfloor \log_2 n \rfloor + 2)(r + s) - 2^{\lfloor \log_2 n \rfloor + 1} + n \]
\[= (\lfloor \log_2 n \rfloor + 3)n - 2^{\lfloor \log_2 n \rfloor + 1}. \]
Let \(n = 2^k - 1 \). Then we take \(r = \lfloor \frac{n}{2} \rfloor \) and \(s = \lfloor \frac{n+1}{2} \rfloor \). Since \(\lfloor \log_2 n \rfloor = \lfloor \log_2 (2^k - 1) \rfloor = k - 1 \), we have
\[
s = \left\lfloor \frac{n+1}{2} \right\rfloor = 2^{k-1} = 2^{\lfloor \log_2 n \rfloor}.
\]

Thus
\[
\#(A) = \#(X) + \#(Y) + \#([x^T - y^T])
 = ([\log_2 r] + 3) r - 2^{\lfloor \log_2 r \rfloor + 1} + ([\log_2 s] + 3) s - 2^{\lfloor \log_2 s \rfloor + 1} + n
 = ([\log_2 n] + 2)(r + s) - 3 \cdot 2^{\lfloor \log_2 n \rfloor} + s + n
 = ([\log_2 n] + 3)n - 2^{\lfloor \log_2 n \rfloor + 1},
\]
which completes the proof. \(\square \)

Since \(\rho(n) = 4n - 4 \) for \(n = 2, 3, 4 \), from the result in [1], for each \(n = 2, 3, 4 \) we know zero patterns, \(B_n \), of \(n \) by \(n \) orthogonal matrices with a full row which have \(\rho(n) \) nonzero entries. That is,

\[
B_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad B_4 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.
\]

For \(n = 5 \), since
\[
B_3 \diamond B_2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},
\]
by lemma 2.1
\[
(4) \quad \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}
\]
is a zero pattern of 5 by 5 sparse orthogonal matrix with a full row which has $\rho(5) = 17$ nonzero entries.

Furthermore, from the result in [2], since, for each $n = 2, 3, 4$, we can get n by n orthogonal matrices with the same zero patterns as B_2, B_3, and B_4 respectively, we get a 5 by 5 orthogonal matrix with the same zero pattern as (4).

For example, let $n = 9$. From (3), since $4 \leq r, s \leq 8$, we take $r = 4$ and $s = 5$. Let X be a 4 by 4 orthogonal matrix with the full row which has $\rho(4) = 12$, and let Y be a 5 by 5 orthogonal matrix with the full row which has $\rho(5) = 17$. Take

\[
X = \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}
\end{bmatrix},
\]

\[
Y = \begin{bmatrix}
\frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{bmatrix}.
\]

Then

\[
A = \begin{bmatrix}
X & \diamond Y \\
x^T & -y^T
\end{bmatrix},
\]
and

\[
\hat{A} = \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} & -\frac{1}{2\sqrt{2}} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{bmatrix}
\]

is a 9 by 9 sparse orthogonal matrix with the full row which has \(\rho(9) = 38\) nonzero entries.

By these recursive manners, we can construct sparse \(n\) by \(n\) orthogonal matrices with a full row which have \(\rho(n)\) nonzero entries.

3. Conjecture for sparse row-orthogonal matrices with a full row

We consider the case that \(A\) is an \(m\) by \(n\) row-orthogonal matrix with a full row.

Let

\[
X = \begin{bmatrix} \hat{X} \\ x^T \end{bmatrix}, \text{ and } Y = \begin{bmatrix} \hat{Y} \\ y^T \end{bmatrix}
\]

be an \(r\) by \(r\) matrix and a \(s\) by \(s\) matrix, respectively. Then both

\[
X \odot Y = \begin{bmatrix} \hat{X} & O \\ x^T & y^T \end{bmatrix}
\]
and
\[A = \begin{bmatrix}
\hat{X} & O \\
O & \hat{Y} \\
x^T & y^T
\end{bmatrix} \]
are \((r + s - 1)\) by \((r + s)\) matrices and have the same nonzero entries. It is clear that \(A\) is an row-orthogonal matrix with the full row if and only if both \(X\) and \(Y\) are square orthogonal matrix with the full row \(x^T\) and with the full row \(y^T\), respectively.

We define an \(m\) by \(n\) matrix \(A\) with \(m \leq n\) to be indecomposable provided \(A\) does not contain a zero submatrix whose dimensions sum to \(n\). It is not difficult to verify that if both \(\hat{X}\) and \(\hat{Y}\) are non-square indecomposable row-orthogonal matrices, then so is their direct sum \(\hat{X} \oplus \hat{Y}\).

For each \(i = 1, 2, \ldots, n - m + 1\), let
\[X_{p_i} = \begin{bmatrix}
\hat{X}_{p_i} \\
x_{p_i}^T
\end{bmatrix} \]
be a \(p_i\) by \(p_i\) orthogonal matrix with the full row \(x_{p_i}^T\) which has \(\rho(p_i)\) nonzero entries where
\[\rho(p_i) = ([\log_2 p_i] + 3)p_i - 2^{\lfloor \log_2 p_i \rfloor + 1}. \]

Define
\[
A = \begin{bmatrix}
\hat{X}_{p_1} & O & O & O \\
O & \hat{X}_{p_2} & O & O \\
O & O & \ddots & O \\
x_{p_1}^T & x_{p_2}^T & \ldots & x_{p_{n-m+1}}^T
\end{bmatrix}
\]
(5)
\[
2^{\left\lfloor \log_2 \left(\frac{n}{n-m+1}\right) \right\rfloor} \leq p_i \leq 2^{\left\lfloor \log_2 \left(\frac{n}{n-m+1}\right) \right\rfloor + 1}
\]
(6)
and

\[p_1 + p_2 + \cdots + p_{n-m+1} = n. \]

Certainly, \(A \) is an \(m \) by \(n \) indecomposable, row-orthogonal matrix with the full row.

There exists \(p_i \)'s satisfying (6) and (7), since we may assume \(p_1 \leq p_2 \leq \cdots \leq p_{n-m+1} \) and we may take

\[p_1 = \left\lfloor \frac{n}{n-m+1} \right\rfloor, \quad p_2 = \left\lfloor \frac{n+1}{n-m+1} \right\rfloor, \quad \cdots, \]

\[p_{n-m+1} = \left\lfloor \frac{n+(n-m)}{n-m+1} \right\rfloor. \]

For example, let \(A \) be a 17 by 19 row-orthogonal matrix with the form in (5). From (6) since \(4 \leq p_i \leq 8 \), \((p_1,p_2,p_3)\)'s satisfying \(p_1 + p_2 + p_3 = 19 \) are \((4,7,8)\), \((5,7,7)\), \((6,6,7)\), and \(A \) has the following forms respectively:

\[
\begin{bmatrix}
\hat{X}_4 & O & O \\
O & \hat{X}_7 & O \\
O & O & \hat{X}_8 \\
x_4^T & x_7^T & x_8^T
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
\hat{X}_5 & O & O \\
O & \hat{X}_7 & O \\
O & O & \hat{X}_7 \\
x_5^T & x_7^T & x_7^T
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
\hat{X}_6 & O & O \\
O & \hat{X}_6 & O \\
O & O & \hat{X}_7 \\
x_6^T & x_6^T & x_7^T
\end{bmatrix}
\]

where for each \(i = 1, 2, 3 \),

\[
\begin{bmatrix}
\hat{X}_{p_i} \\
x_{p_i}^T
\end{bmatrix}
\]

is a \(p_i \) by \(p_i \) orthogonal matrix with the full row \(x_{p_i}^T \) which has \(\rho(p_i) \) nonzero entries. These matrices are determined from Theorem 2.2. It is easy to compute that \#(\(A \)) = 71 for the matrices in (8). But note that if

\[
A =
\begin{bmatrix}
\hat{X}_3 & O & O \\
O & \hat{X}_8 & O \\
x_3^T & x_8^T & x_8^T
\end{bmatrix}
\]

then \#(\(A \)) = 72. This means that the condition (6) for \(p_i \)'s is necessary to get sparse row-orthogonal matrices with a full row.
Now, we determine the number of nonzero entries of A in (5). We claim

$$\#(A) = (k + 3)n - (n - m + 1)2^{k+1}$$

where

$$k = \left\lfloor \log_2 \left(\frac{n}{n - m + 1} \right) \right\rfloor.$$

Since $2^k \leq p_i \leq 2^{k+1}$ for each $i = 1, 2, \ldots, n - m + 1$,

$$[\log_2 p_i] = \begin{cases}
 k & \text{if } 2^k \leq p_i < 2^{k+1} \\
 k + 1 & \text{if } p_i = 2^{k+1}.
\end{cases}$$

Thus if $2^k \leq p_i < 2^{k+1}$ for each $i = 1, 2, \ldots, n - m + 1$, then

$$\#(A) = \#(X_{p_1}) + \#(X_{p_2}) + \cdots + \#(X_{p_{n-m+1}})$$

$$= (k + 3)(p_1 + p_2 + \cdots + p_{n-m+1}) - (n - m + 1)2^{k+1}$$

$$= (k + 3)n - (n - m + 1)2^{k+1}.$$

Let $p_i = 2^{k+1}$ for $i = j, j + 1, \ldots, n - m + 1$. Since $p_j + p_{j+1} + \cdots + p_{n-m+1} = (n - m - j + 2)2^{k+1}$,

$$\#(A) = \#(X_{p_1}) + \#(X_{p_2}) + \cdots + \#(X_{p_{n-m+1}})$$

$$= (k + 3)(p_1 + p_2 + \cdots + p_{j-1}) - (j - 1)2^{k+1}$$

$$+ (k + 4)(p_j + p_{j+1} + \cdots + p_{n-m+1}) - (n - m - j + 2)2^{k+2}$$

$$= (k + 3)n - (n - m + 1)2^{k+1}.$$

In the above example, i.e., if A is a 17 by 19 row-orthogonal matrix with the full row in (8) then $k = 2$, and thus $\#(A) = 5 \cdot 19 - 3 \cdot 2^3 = 71$.

Thus, for positive integers m and n with $m \leq n$, if $f(m, n)$ denote the least number of nonzero entries in an m by n indecomposable, row-orthogonal matrix with a full row then we conclude that

$$f(m, n) \leq (k + 3)n - (n - m + 1)2^{k+1}$$

where

$$k = \left\lfloor \log_2 \left(\frac{n}{n - m + 1} \right) \right\rfloor.$$

And we have the following conjecture.
Conjecture. For positive integers \(m \) and \(n \) with \(m \leq n \), let \(f(m, n) \) denote the least number of nonzero entries in an \(m \) by \(n \) indecomposable, row-orthogonal matrix with a full row, then the equality holds in (9). Furthermore, the equality holds in (9) if and only if, up to row and column permutations, the matrix is \(A \) in (5).

Note that if \(A \) is an \(n \) by \(n \) indecomposable, orthogonal matrix with a full row, from [4], since

\[
\#(A) \geq (\lfloor \log_2 n \rfloor + 3)n - 2^{\lfloor \log_2 n \rfloor + 1},
\]

this conjecture holds for \(m = n \). Thus this conjecture is a generalization of the result in [4].

Acknowledgement. The first author would like to thank Professor Bryan L. Shader for his helpful guidance.

References

Gi-Sang Cheon
Department of Mathematics
Daejin University
Pocheon 487-711, Korea
E-mail: gscheon@road.daejin.ac.kr
Se-Won Park
Department of Mathematics
Seonam University
Namwon 590-170, Korea
E-mail: swpark@tiger.seonam.ac.kr

Han-Guk Seol
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
E-mail: shk@math.skku.ac.kr