CODIMENSION REDUCTION
FOR REAL SUBMANIFOLDS OF
QUATERNIONIC PROJECTIVE SPACE

JUNG-HWAN Kwon AND JIN Suk Pak

Abstract. In this paper we prove a reduction theorem of the codimension for real submanifold of quaternionic projective space as a quaternionic analogue corresponding to those in Cecil [4], Erbacher [5] and Okumura [9], and apply the theorem to quaternionic CR-submanifold of quaternionic projective space.

1. Introduction

In general, it is very hard to classify submanifolds immersed in a Riemannian manifold even though the ambient manifold is specified, and so the so-called codimension reduction problem is sometimes very important role in the theory of submanifolds.

The codimension reduction problem was investigated by Allendoerfer [1] in the case that the ambient manifold is a Euclidean space and by Erbacher [5] in the case that the ambient manifold is a real space form. On the other hand, as a complex analogue for submanifold of complex projective space, Cecil [4] proved a codimension reduction theorem for complex submanifold and Okumura [9] a theorem corresponding to those in [4] and [5] for real submanifold.

In this paper we prove a quaternionic analogue for real submanifold of quaternionic projective space which may correspond to those in [4], [5] and [9]. We mainly follow Okumura’s method in his paper [9].

Received May 9, 1998.
1991 Mathematics Subject Classification: 53C40, 53C15.
Key words and phrases: quaternionic projective space, reduction theorem, quaternionically invariant subspace, quaternionic CR-submanifold, lift flat.
This research was supported by KOSEF, Project No. 981-0104-017-2 and (in part) by BSRI, 1998-015-D00030 and TGRC-KOSEF.
2. Preliminaries

Let \overline{M} be a real $(n + p)$-dimensional quaternionic Kähler manifold. Then, by definition, there is a 3-dimensional vector bundle V consisting with tensor fields of type (1,1) over \overline{M} satisfying the following conditions (a), (b) and (c):

(a) In any coordinate neighborhood \overline{U}, there is a local basis $\{F, G, H\}$ of V such that

$$
\begin{cases}
F^2 = -I, & G^2 = -I, & H^2 = -I, \\
\tilde{F}G = -GF = H, & GH = -HG = F, & HF = -FH = G.
\end{cases}
$$

(b) There is a Riemannian metric g which satisfies the Hermitian property with respect to all of F, G and H.

(c) For the Levi-Civita connection $\overline{\nabla}$ with respect to g

$$
\begin{pmatrix}
\nabla F \\
\nabla G \\
\nabla H
\end{pmatrix} =
\begin{pmatrix}
0 & r & -q \\
-r & 0 & p \\
q & -p & 0
\end{pmatrix}
\begin{pmatrix}
F \\
G \\
H
\end{pmatrix}
$$

where p, q and r are local 1-forms defined in \overline{U}. Such a local basis $\{F, G, H\}$ is called a canonical local basis of the bundle V in \overline{U} (cf. [6,7]).

For canonical local bases $\{F, G, H\}$ and $\{F', G', H'\}$ of V in coordinate neighborhoods \overline{U} and \overline{U}' respectively, it follows from (2.1) that in $\overline{U} \cap \overline{U}'$

$\begin{pmatrix}
F' \\
G' \\
H'
\end{pmatrix} = (s_{xy})
\begin{pmatrix}
F \\
G \\
H
\end{pmatrix}
(x, y = 1, 2, 3)$

with differentiable functions s_{xy}, where the matrix $S = (s_{xy})$ is contained in $SO(3)$. As is well known, every quaternionic Kähler manifold is orientable (cf. [6,7]).

Let M be an n-dimensional submanifold isometrically immersed in \overline{M} and let i the isometric immersion. Then, for any tangent vector field X and normal vector field ξ to M, we have the following decompositions in tangential and normal components (In what follows we will delete i and its differential i_* in our notation):

$$
(2.4) \quad FX = \phi X + u(X), \quad GX = \psi X + v(X), \quad HX = \theta X + w(X),
$$

$$
(2.5) \quad F\xi = -U_\xi + P_F\xi, \quad G\xi = -V_\xi + P_G\xi, \quad H\xi = -W_\xi + P_H\xi.
$$
Then ϕ, ψ and θ are skew-symmetric endomorphisms acting on the tangent bundle TM, and P_F, P_G and P_H define those on the normal bundle TM^\perp. Also u, v and w are normal bundle valued 1-forms on TM. It is easily verified that

$$
(2.6) \quad g(X, U_\xi) = g(u(X), \xi), \quad g(X, V_\xi) = g(v(X), \xi), \\
\quad \quad \quad \quad g(X, W_\xi) = g(w(X), \xi)
$$

for any $X \in TM$, $\xi \in TM^\perp$, where and in the sequel we denote the induced metric form that of \bar{M} by the same letter g. Applying F to the first equation of (2.4) and using (2.1), (2.4) and (2.5), we have

$$
\phi^2 X = -X + U_u(x), \quad u(\phi X) = -P_F u(X).
$$

Similarly we have

$$
(2.7) \quad \phi^2 X = -X + U_u(x), \quad \psi^2 X = -X + V_v(x), \quad \theta^2 X = -X + W_w(x), \\
(2.8) \quad u(\phi X) = -P_F u(X), \quad v(\psi X) = -P_G v(X), \quad w(\theta X) = -P_H w(X).
$$

Next, applying G and H to the first equation of (2.4), respectively and using (2.1), (2.4) and (2.5), we have

$$
\theta X + w(X) = -\psi(\phi X) - v(\phi X) + V_v(x) - P_G u(X), \\
\psi X + v(X) = \theta(\phi X) + w(\phi X) - W_w(x) + P_H u(X),
$$

and consequently

$$
(2.9) \quad \psi \phi X = -\theta X + V_u(x), \quad v(\phi X) + P_G u(X) = -w(X), \\
(2.10) \quad \theta \phi X = \psi X + W_u(x), \quad w(\phi X) + P_H u(X) = v(X).
$$

Similarly we have from the other equations of (2.4)

$$
(2.11) \quad \phi \psi X = \theta X + U_v(x), \quad u(\psi X) + P_F v(X) = w(X), \\
(2.12) \quad \theta \psi X = -\phi X + W_v(x), \quad w(\psi X) + P_H v(X) = -u(X), \\
(2.13) \quad \phi \theta X = -\psi X + U_w(x), \quad u(\theta X) + P_F w(X) = -v(X), \\
(2.14) \quad \psi \theta X = \phi X + V_w(x), \quad v(\theta X) + P_G w(X) = u(X).
$$
By the quite similar method as above, we have from (2.5) that

\begin{align}
(2.15) & \quad P_F^{-2} \xi = -\xi + u(U_\xi), \quad P_G^{-2} \xi = -\xi + v(V_\xi), \\
& \quad P_H^{-2} \xi = -\xi + w(W_\xi), \\
(2.16) & \quad \phi(U_\xi) = -U_{P_F \xi}, \quad \psi(V_\xi) = -V_{P_G \xi}, \quad \theta(W_\xi) = -W_{P_H \xi}, \\
(2.17) & \quad W_\xi = -V_{P_F \xi} - \psi U_\xi, \quad P_G P_F \xi = -P_H \xi + v(U_\xi), \\
(2.18) & \quad V_\xi = W_{P_F \xi} + \theta U_\xi, \quad P_H P_F \xi = P_G \xi + w(U_\xi), \\
(2.19) & \quad W_\xi = U_{P_G \xi} + \phi V_\xi, \quad P_F P_G \xi = P_H \xi + u(V_\xi), \\
(2.20) & \quad U_\xi = -W_{P_G \xi} - \theta V_\xi, \quad P_H P_G \xi = -P_F \xi + w(V_\xi), \\
(2.21) & \quad V_\xi = -U_{P_H \xi} - \phi W_\xi, \quad P_F P_H \xi = -P_G \xi + u(W_\xi), \\
(2.22) & \quad U_\xi = V_{P_H \xi} + \psi W_\xi, \quad P_G P_H \xi = P_F \xi + v(W_\xi).
\end{align}

We denote by ∇ the Levi-Civita connection of M and by ∇^\perp the normal connection induced from ∇ to TM^\perp. Then they are related by the Gauss and Weingarten equations (In what follows we will again delete i and its differential i^* in our notation):

\begin{align}
(2.23) & \quad \nabla_X Y = \nabla_X Y + h(X,Y), \\
(2.24) & \quad \nabla_X \xi = -A_\xi X + \nabla_X^\perp \xi,
\end{align}

where h is the second fundamental form and A_ξ the shape operator with respect to the normal vector field ξ.

Differentiating the first equation of (2.4) covariantly and using (2.2), (2.4), (2.5), (2.23) and (2.24), we have

\begin{align}
(2.25) & \quad (\nabla_Y \phi) X = r(Y) \psi X - q(Y) \theta X - U_{h(Y,X)} + A_u(X) Y, \\
& \quad (\ast \nabla_Y u) X = r(Y) u(X) - q(Y) w(X) - h(Y, \phi X) + P_F h(Y,X),
\end{align}

where $\ast (\nabla_Y u) X$ is defined by $(\nabla_Y u) X = \nabla_Y^\perp u(X) - u(\nabla_Y X)$.

Similarly, from the other equations of (2.4), we have

\begin{align}
(2.26) & \quad (\nabla_Y \psi) X = p(Y) \theta X - r(Y) \phi X - V_{h(Y,X)} + A_v(X) Y, \\
& \quad (\ast \nabla_Y v) X = p(Y) w(X) - r(Y) u(X) - h(Y, \psi X) + P_G h(Y,X),
\end{align}
\[(\nabla_Y \theta)X = q(Y)\phi X - p(Y)\psi X - W_{h(Y, X)} + A_w(X)Y, \quad (2.27)\]
\[*(\nabla_Y w)X = q(Y)u(X) - p(Y)v(X) - h(Y, \theta X) + P_H h(Y, X),\]

where \((\nabla_Y v)X = \nabla^{\perp}_X v(X) - v(\nabla_Y X)\) and \((\nabla_Y w)X = \nabla^{\perp}_X w(X) - w(\nabla_Y X)\).

Next, differentiating the first equation of (2.5) covariantly and making use of (2.2), (2.4), (2.5), (2.23) and (2.24), we have
\[\nabla_Y U_\xi = r(Y)V_\xi - q(Y)W_\xi + \phi A_\xi Y - A_{PF_\xi} Y + U_{\nabla^{\perp}_Y \xi}, \quad (2.28)\]
\[\nabla^{\perp}_Y P_F)\xi = r(Y)P_G Y - q(Y)P_H Y - u(A_\xi Y) + h(Y, U_\xi),\]

where \((\nabla^{\perp}_Y P_F)\xi\) is defined by \((\nabla^{\perp}_Y P_F)\xi = \nabla^{\perp}_X (P_F \xi) - P_F (\nabla^{\perp}_Y \xi)\).

Similarly, from the other equations of (2.5), we have
\[\nabla_Y V_\xi = -r(Y)U_\xi + p(Y)W_\xi + \psi A_\xi Y - A_{PG_\xi} Y + V_{\nabla^{\perp}_Y \xi}, \quad (2.29)\]
\[\nabla^{\perp}_Y P_G)\xi = -r(Y)P_F \xi + p(Y)P_H \xi - v(A_\xi Y) + h(Y, V_\xi),\]
\[\nabla_Y W_\xi = q(Y)U_\xi - p(Y)V_\xi + \theta A_\xi Y - A_{PH_\xi} Y + W_{\nabla^{\perp}_Y \xi}, \quad (2.30)\]
\[\nabla^{\perp}_Y P_H)\xi = q(Y)P_F \xi - p(Y)P_G \xi - w(A_\xi Y) + h(Y, W_\xi),\]

where \((\nabla^{\perp}_Y P_G)\xi = \nabla^{\perp}_Y (P_G \xi) - P_G (\nabla^{\perp}_Y \xi)\) and \((\nabla^{\perp}_Y P_H)\xi = \nabla^{\perp}_Y (P_H \xi) - p_H (\nabla^{\perp}_Y \xi)\).

3. Quaternionically holomorphic first normal space

Let \(N_0(x) := \{\xi \in T_x M \perp | A_\xi = 0\}\}. The first normal space \(N_1(x)\) is defined to be the orthogonal complement to \(N_0(x)\) in \(T_x M \perp\). We put
\[H_0(x) := N_0(x) \cap FN_0(x) \cap GN_0(x) \cap HN_0(x).\]
Then \(H_0(x)\) is the maximal quaternionically invariant (or briefly \(Q\)-invariant) subspace of \(N_0(x)\), that is,
\[FH_0(x) \subset H_0(x), \quad GH_0(x) \subset H_0(x), \quad HH_0(x) \subset H_0(x).\]

Since \(F, G\) and \(H\) are isomorphisms, it is clear that
\[FH_0(x) = H_0(x), \quad GH_0(x) = H_0(x), \quad HH_0(x) = H_0(x).\]
Taking account of (2.5), we can easily verify...
Lemma 3.1. For any \(\xi \in H_0(x) \), we have

\[
A_\xi = 0 \quad \text{and} \quad U_\xi = V_\xi = W_\xi = 0.
\]

Definition. The quaternionically holomorphic (or Q-holomorphic) first normal space \(H_1(x) \) is the orthogonal complement of \(H_0(x) \) in \(T_xM^\perp \).

By definition, it is clear that \(N_1(x) \subset H_1(x) \) in \(T_xM^\perp \). Moreover we have

Lemma 3.2. If \(M \) is a Q-invariant submanifold of a quaternionic Kähler manifold, then \(H_1(x) = N_1(x) \).

Proof. Since \(H_1(x) \) and \(N_1(x) \) are the orthogonal complements of \(H_0(x) \) and \(N_0(x) \), respectively, we have only to show that \(H_0(x) = N_0(x) \). Since \(T_xM^\perp \) is Q-invariant, it follows from (2.2), (2.23) and (2.24) that

\[
\overline{\nabla}_X(F\xi) = r(X)G\xi - q(X)H\xi + F(\overline{\nabla}_X^\perp \xi - A_\xi X) \\
= -A_{F\xi}X + \nabla_X^\perp (F\xi)
\]

and consequently \(A_{F\xi}X = FA_\xi X \). Similarly we have \(A_{G\xi}X = GA_\xi X \) and \(A_{H\xi}X = HA_\xi X \). Thus, if \(\xi \in N_0(x) \), then

\[
A_{F\xi} = 0 \quad \text{and} \quad \xi \in FN_0(x), \quad A_{G\xi} = 0 \quad \text{and} \quad \xi \in GN_0(x), \\
A_{H\xi} = 0 \quad \text{and} \quad \xi \in HN_0(x).
\]

This shows that \(\xi \in N_0(x) \) implies \(\xi \in H_0(x) \), which completes the proof. \(\square \)

Lemma 3.3. Let \(H(x) \) be a Q-invariant subspace of \(H_0(x) \) and \(H_2(x) \) its orthogonal complement in \(T_xM^\perp \). Then \(T_xM \oplus H_2(x) \) is a Q-invariant subspace of \(T_x\overline{M} \).
Proof. We first note that
\[T_x \overline{M} = T_x M \oplus H_2(x) \oplus H(x). \]
Since \(F H(x) = H(x) \), for any \(\xi \in H(x) \) there exists \(\eta \in H(x) \) such that \(F \eta = \xi \). Now let \(Z \in T_x M \oplus H_2(x) \). Then for any \(\xi \in H(x) \),
\[\langle FZ, \xi \rangle = \langle Z, \eta \rangle = 0. \]
This means that \(FZ \in T_x M \oplus H_2(x) \). By quite similar method, we can verify that \(T_x M \oplus H_2(x) \) is \(Q \)-invariant. This completes the proof. \(\square \)

Now we recall that an \((n+p+3)\)-dimensional sphere \(S^{n+p+3} \) of radius 1 in a Euclidean \((n+p+4)\)-space is a principal \(S^3 \)-bundle over \(QP^{n+4} \). Then the Hopf-fibration \(\overline{\pi} : S^{n+p+3} \rightarrow QP^{n+4} \) defines a Riemannian submersion. We construct the \(S^3 \)-bundle over the submanifold \(M \) in such a way that the diagram
\[
\begin{array}{ccc}
\pi^{-1}(M) & \xrightarrow{i} & S^{n+p+3} \\
\downarrow & & \downarrow \overline{\pi} \\
M & \xrightarrow{i} & QP^{n+4}
\end{array}
\]
is commutative (\(i, \overline{i} \) being the isometric immersions). We denote by \(X^* \) the horizontal lift of \(X \in TM \) and by \(\xi^* \) that of the normal vector field \(\xi \in TM^\perp \). We put
\[N'_0(x') = \{ \xi' \in T_{x'} \pi^{-1}(M)^\perp \mid A_{\xi'} = 0 \}, \quad x' \in \pi^{-1}(M), \]
where \(A_{\xi'} \) denotes the shape operator with respect to the normal vector field \(\xi' \) to \(\pi^{-1}(M) \). Then, as shown in [8], we have
\[N'_0(x') = \{ \xi^* \mid A_\xi = 0, \quad U_\xi = V_\xi = W_\xi = 0 \}. \tag{3.1} \]

Applying the reduction theorem due to Erbacher [5], we prove

Theorem 3.4. Let \(M \) be an \(n \)-dimensional real submanifold of a real \((n+p)\)-dimensional quaternionic projective space \(QP^{n+4} \) and let \(H(x) \) a \(Q \)-invariant subspace of \(H_0(x) \). If the orthogonal complement \(H_2(x) \) of \(H(x) \) in \(T_x M^\perp \) is invariant under parallel translation with respect to the normal connection and \(q \) is the constant dimension of \(H_2 \), then there exists a real \((n+q)\)-dimensional totally geodesic quaternionic projective subspace \(QP^{n+4} \) such that \(M \subset QP^{n+4} \).
Proof. Let $\xi \in H(x)$. Then $\xi \in H_0(x)$, which and Lemma 3.1 give

$$A_\xi = 0 \quad \text{and} \quad U_\xi = V_\xi = W_\xi = 0$$

and consequently $A'_{\xi*} = 0$ because of (3.1). This means that for a point x' with $\pi(x') = x$

$$H(x)^* = \{\xi^* \mid \xi \in H(x)\} \subset N_0(x').$$

Hence the orthogonal complement $H_2(x)^* = \{\xi^* \mid \xi \in H_2(x)\}$ of $H(x)^*$ in $T_{x'}(\pi^{-1}(M))^\perp$ is a subspace of $T_{x'}(\pi^{-1}(M))^\perp$ such that $H'_2(x') \subset H_2(x)^*$. Since $H_2(x)$ is invariant under parallel translation with respect to the normal connection, so does $H(x)$. This shows that for any $\xi \in H(x)$, $\nabla_{\hat{\xi}}^h \xi \in H(x)$, which and

$$\nabla_{\hat{\xi}}^{h*} \xi^* = (\nabla_{\hat{\xi}}^{h*} \xi^* \in H(x)^*), \quad \nabla_{\hat{\xi}}^{h*} \xi^* = -(F \xi)^* \in H(x)^*,$$

$$\nabla_{\hat{\xi}}^{h*} \xi^* = -(G \xi)^* \in H(x)^*), \quad \nabla_{\hat{\xi}}^{h*} \xi^* = -(H \xi)^* \in H(x)^*$$

imply that $H(x)^*$ is invariant under parallel translation with respect to the normal connection ∇^h of $\pi^{-1}(M)$. From the reduction theorem ([5], p. 339), we know that there exists a totally geodesic submanifold S^{n+q+3} such that $\pi^{-1}(M) \subset S^{n+q+3}$. Let $\hat{U}(x')$ be a neighborhood of a point x' with $\pi(x') = x$. Then the tangent space $T_{y'}(S^{n+q+3})$ of the totally geodesic submanifold at $y' \in \hat{U}(x')$ is

$$T_{y'}(\pi^{-1}(M)) \oplus H_2(y)^* = (T_y M \oplus H_2(y))^* \oplus T_{y'}(\pi^{-1}(y)),$$

where $y = \pi(y')$. Since S^{n+q+3} is totally geodesic in S^{n+p+3}, the maximal integral submanifold S^3 of the distribution $y' \mapsto T_{y'}(\pi^{-1}(y))$ is a 3-dimensional great sphere of S^{n+p+3}. Hence the Hopf-fibration $S^{n+q+3} \to QP^{n+q}_4$ by S^3 is compatible with the Hopf-fibration $\tilde{\pi} : S^{n+p+3} \to QP^{n+p}_4$ and the tangent space of QP^{n+q}_4 at x is $T_x M \oplus H_2(x)$. Moreover, by Lemma 3.3, QP^{n+q}_4 is Q-invariant in QP^{n+p}_4. This completes the proof. \qed

For a Q-invariant submanifold, by Lemma 3.2 we see that $H_0(x) = N_0(x)$ at any x in M. Thus we have
Corollary 3.5. Let M be a real n-dimensional Q-invariant submanifold of $QP^{n+\mathbb{R}}$. Assume that a Q-invariant subspace of the first normal space $N_1(x)$ has constant dimension q and is invariant under parallel translation with respect to the normal connection. Then there exists a totally geodesic real $(n+q)$-dimensional quaternionic projective space QP^{n+3} such that $M \subset QP^{n+3}$.

4. Quaternionic CR-submanifolds

In this section, let M be an n-dimensional real submanifold of a quaternionic Kähler manifold, if there is a Q-invariant distribution $\mathcal{D}: x \mapsto \mathcal{D}_x \subset T_x M$ such that its complementary orthogonal distribution $\mathcal{D}^\perp: x \mapsto \mathcal{D}_x^\perp$ in TM is anti-quaternionic, that is,

$$FD_x^\perp \subset T_x M^\perp, \quad GD_x^\perp \subset T_x M^\perp, \quad HD_x^\perp \subset T_x M^\perp,$$

then M is called a \textit{quaternionic CR-submanifold} ([2,3]). In particular, if $\dim \mathcal{D}_x = 0$ for any x in M, the quaternionic CR-submanifold is called an \textit{anti-quaternionic submanifold} ([3,10]).

Let M be a quaternionic CR-submanifold of a quaternionic Kähler manifold \overline{M}. Then, by definition, the tangent space $T_x \overline{M}$ at x in M is decomposed as

$$(4.1) \quad T_x \overline{M} = T_x M \oplus FD_x^\perp \oplus GD_x^\perp \oplus HD_x^\perp \oplus N_x M,$$

where $N_x M$ is the orthogonal complement of $FD_x^\perp \oplus GD_x^\perp \oplus HD_x^\perp$ in $T_x M^\perp$.

Lemma 4.1. $N_x M$ is a Q-invariant, that is,

$$FN_x M \subset N_x M, \quad GN_x M \subset N_x M, \quad HN_x M \subset N_x M.$$

Proof. Let $X \in T_x M \oplus FD_x^\perp \oplus GD_x^\perp \oplus HD_x^\perp$ and $\xi \in N_x M$. Since X is decomposed as

$$X = X_1 + X_2 + FY_1 + GY_2 + HY_3$$
for some $X_1 \in D_x$ and $X_2, Y_1, Y_2, Y_3 \in D_x^\perp$, it is clear that
\[
\langle X, F\xi \rangle = -\langle FX, \xi \rangle \\
= -\langle FX_1, \xi \rangle - \langle FX_2, \xi \rangle + \langle Y_1, \xi \rangle + \langle Y_2, \xi \rangle + \langle Y_3, \xi \rangle \\
= 0.
\]
Similarly we have $\langle X, G\xi \rangle = \langle X, H\xi \rangle = 0$, and consequently
\[
FN_xM \subset N_xM, \quad GN_xM \subset N_xM, \quad HN_xM \subset N_xM.
\]
This completes the proof.

\textbf{Lemma 4.2.} Assume that NM is invariant under parallel translation with respect to the normal connection. Then, for any $\xi \in NM$ and $\eta \in TM^\perp$, \[
A_\xi U_\eta = 0, \quad A_\xi V_\eta = 0, \quad A_\xi W_\eta = 0.
\]

\textit{Proof.} By means of Lemma 4.1 and our assumption, it follows that for any $\xi \in NM$
\begin{align*}
F\xi &= P_F\xi, \quad G\xi = P_G\xi, \quad H\xi = P_H\xi, \quad \nabla^\perp_X\xi, \\
F\nabla^\perp_X\xi &= P_F\nabla^\perp_X\xi, \quad G\nabla^\perp_X\xi = P_G\nabla^\perp_X\xi, \quad H\nabla^\perp_X\xi = P_H\nabla^\perp_X\xi
\end{align*}
are all contained in NM. Differentiating the first three equations of those covariantly, we have
\begin{equation}
\nabla_X(F\xi) = \nabla_X(P_F\xi) = -A_{P_F\xi}X + \nabla^\perp_X(P_F\xi),
\end{equation}
\begin{equation}
\nabla_X(G\xi) = \nabla_X(P_G\xi) = -A_{P_G\xi}X + \nabla^\perp_X(P_G\xi),
\end{equation}
\begin{equation}
\nabla_X(H\xi) = \nabla_X(P_H\xi) = -A_{P_H\xi}X + \nabla^\perp_X(P_H\xi).
\end{equation}
Also we have
\begin{equation}
\nabla_X(F\xi) = r(X)P_G\xi - q(X)P_H\xi - \phi A_\xi X - u(A_\xi X) + P_F\nabla^\perp_X\xi,
\end{equation}
\begin{equation}
\nabla_X(G\xi) = p(X)P_H\xi - r(X)P_F\xi - \psi A_\xi X - v(A_\xi X) + P_G\nabla^\perp_X\xi,
\end{equation}
\begin{equation}
\nabla_X(H\xi) = q(X)P_F\xi - p(X)P_G\xi - \theta A_\xi X - w(A_\xi X) + P_H\nabla^\perp_X\xi.
\end{equation}
We notice that \(U_\zeta = V_\zeta = W_\zeta = 0 \) for any \(\zeta \in NM \). Consequently (2.6) implies
\[
u(X), \ v(X), \ w(X) \in FD^\perp \oplus GD^\perp \oplus HD^\perp
\]
for any \(X \) in \(TM \). Comparing the normal parts of (4.2) and (4.3), we have
\[
u(A_\xi X) = 0, \quad v(A_\xi X) = 0, \quad w(A_\xi X) = 0.
\]
Thus for any \(\eta \in TM^\perp \)
\[
g(A_\xi U_\eta, X) = 0, \quad g(A_\xi V_\eta, X) = 0, \quad g(A_\xi W_\eta, X) = 0
\]
and consequently \(A_\xi U_\eta = A_\xi V_\eta = A_\xi W_\eta = 0 \). This completes the proof. \(\square \)

Theorem 4.3. Let \(M \) be an \(n \)-dimensional anti-quaternionic submanifold of \(QP^{n+\nu} \). If \(NM \) is invariant under parallel translation with respect to the normal connection, then there exists a real \(4n \)-dimensional totally geodesic quaternionic projective space \(QP^n \) of \(QP^{n+\nu} \) such that \(M \) is an anti-quaternionic submanifold of \(QP^n \).

Proof. Since \(M \) is anti-quaternionic, the tangential parts of (4.3) vanish identically. Comparing the tangential parts of (4.2) and (4.3), we have
\[
A_{PF_\xi} \xi = 0, \quad A_{PG_\xi} \xi = 0, \quad A_{PH_\xi} \xi = 0
\]
for all \(\xi \) in \(NM \). But, in an anti-quaternionic submanifold, \(P_F, P_G \) and \(P_H \) are all isomorphisms on \(NM \) and consequently \(A_\xi = 0 \) for any \(\xi \) in \(NM \). Thus by means of Lemma 4.1 \(NM \subset H_0M \).

Conversely, let \(\xi \in H_0(x) \). Then for any \(X, Y_1, Y_2, Y_3 \in T_xM \), we have
\[
\langle \xi, X + FY_1 + GY_2 + HY_3 \rangle = 0
\]
since \(H_0(x) \) is \(Q \)-invariant. Thus \(\xi \) belongs to the orthogonal complement of \(T_xM \oplus FT_xM \oplus GT_xM \oplus HT_xM \), that is, \(\xi \in N_xM \). Hence \(NM \subset H_0M \) and consequently \(FT_xM \oplus GT_xM \oplus HT_xM \) is the \(Q \)-holomorphic first normal space. Applying Theorem 3.4, we conclude that there is a real \(4n \)-dimensional totally geodesic quaternionic projective space \(QP^n \) of \(QP^{n+\nu} \) such that \(M \) is anti-quaternionic in \(QP^n \). \(\square \)
In [8] and [11] it was already proved that the normal connection of
\(\pi^{-1}(M) \) in \(S^{n+p+3} \) is flat if and only if the following conditions are
satisfied on \(M \):

\[
(a) \quad R^\perp(X,Y)\xi = -2g(\phi X,Y)P_F\xi - 2g(\psi X,Y)P_G\xi \\
\quad - 2g(\theta X,Y)P_H\xi,
\]

(4.4)

(b) The structure induced on the normal bundle is parallel
(for the definition, see [11]).

In this sense the normal connection of \(M \) in \(QP^{n+2}_{n+2} \) is said to be lift flat
if the conditions (a) and (b) are valid.

Lemma 4.4. Let \(M \) be a quaternionic \(CR \)-submanifold of \(QP^{n+2}_{n+2} \)
with lift flat normal connection. Then \(A_\xi A_\eta = A_\eta A_\xi \) for \(\xi \in N_xM \)
and \(\eta \in T_xM^\perp \).

Proof. Since the normal connection is lift flat, the equation of Ricci
and (4.4) (a) implies

\[
0 = h(A_\xi X,Y) - h(A_\xi Y,X) + g(Y,U_\xi)u(X) - g(X,U_\xi)u(Y) \\
+ g(Y,V_\xi)v(X) - g(X,V_\xi)v(Y) + g(Y,W_\xi)w(X) - g(X,W_\xi)w(Y).
\]

In particular, for \(\xi \in N_xM, U_\xi = V_\xi = W_\xi = 0 \), and consequently

(4.5) \quad h(A_\xi X,Y) = h(A_\xi Y,X).

Hence, if \(\xi \in N_xM \) and \(\eta \in T_xM^\perp \), we have

\[
g((A_\eta A_\xi - A_\xi A_\eta)X,Y) \\
= g(A_\eta A_\xi X,Y) - g(A_\xi A_\eta X,Y) \\
= g(h(A_\xi X,Y),\eta) - g(h(A_\xi Y,X),\eta) = 0
\]

because of (4.5). This completes the proof. \(\square\)

Theorem 4.5. Assume that the normal connection of a quaternionic \(CR \)-submanifold \(M \) of \(QP^{n+2}_{n+2} \) is lift flat and that \(NM \) is invariant
under parallel translation with respect to the normal connection.
Then there is a totally geodesic quaternionic projective space \(QP^{n+2}_{n+2} \)
such that \(M \) is a quaternionic \(CR \)-submanifold of the quaternionic projective space.
Proof. By means of Theorem 4.3, it suffices to show that \(NM = H_0 M \). We choose orthonormal normal vector fields \(\xi_1, \ldots, \xi_p \) in such a way that

\[
\xi_1, \ldots, \xi_q \in F\mathcal{D}^\perp \oplus G\mathcal{D}^\perp \oplus H\mathcal{D}^\perp, \quad \xi_{q+1}, \ldots, \xi_p \in NM
\]

\((q \text{ must be a multiple of three})\) and denote by \(A_{\alpha} \) the shape operator for \(\xi_{\alpha} \). Since \(NM \) is not only invariant under parallel translation with respect to the normal connection, but also \(Q \)-invariant, it follows that

\[
(4.6) \quad \nabla_X^\perp \xi_{\alpha} = \sum_{\lambda=q+1}^{p} s_{\alpha \lambda}(X)\xi_{\lambda}, \quad \alpha = q + 1, \ldots, p,
\]

\[
(4.7) \quad \begin{cases}
F\xi_{\alpha} = P_F\xi_{\alpha} = \sum_{\lambda=q+1}^{p} (P_F)_{\alpha \lambda} \xi_{\lambda}, \\
G\xi_{\alpha} = P_G\xi_{\alpha} = \sum_{\lambda=q+1}^{p} (P_G)_{\alpha \lambda} \xi_{\lambda}, \quad \alpha = q + 1, \ldots, p, \\
H\xi_{\alpha} = P_H\xi_{\alpha} = \sum_{\lambda=q+1}^{p} (P_H)_{\alpha \lambda} \xi_{\lambda},
\end{cases}
\]

from which we have

\[
(4.8) \quad \begin{cases}
F\nabla_X^\perp \xi_{\alpha} = \sum_{\lambda, \mu=q+1}^{p} s_{\alpha \lambda}(X)(P_F)_{\lambda \mu} \xi_{\mu}, \\
G\nabla_X^\perp \xi_{\alpha} = \sum_{\lambda, \mu=q+1}^{p} s_{\alpha \lambda}(X)(P_G)_{\lambda \mu} \xi_{\mu}, \quad \alpha = q + 1, \ldots, p. \\
H\nabla_X^\perp \xi_{\alpha} = \sum_{\lambda, \mu=q+1}^{p} s_{\alpha \lambda}(X)(P_H)_{\lambda \mu} \xi_{\mu},
\end{cases}
\]

On the other hand, comparing the tangential parts of (4.2) and (4.3), and using (4.7), we obtain

\[
(4.9) \quad \begin{cases}
\phi A_{\lambda} X = \sum_{\mu=q+1}^{p} (P_F)_{\lambda \mu} A_{\mu} X, \\
\psi A_{\lambda} X = \sum_{\mu=q+1}^{p} (P_G)_{\lambda \mu} A_{\mu} X, \quad \lambda \geq q + 1. \\
\theta A_{\lambda} X = \sum_{\mu=q+1}^{p} (P_H)_{\lambda \mu} A_{\mu} X,
\end{cases}
\]

Substituting \(A_{\lambda} X \) for \(X \) in (4.9) and summing over \(\lambda = q + 1, \ldots, p \), we have

\[
\phi \sum_{\lambda=q+1}^{p} A_{\lambda} X = \sum_{\lambda, \mu=q+1}^{p} (P_F)_{\lambda \mu} A_{\lambda} A_{\mu} X = 0
\]
because \((P_F)_{\lambda\mu}\) is skew-symmetric with respect to \(\lambda\) and \(\mu\), but \(A_{\lambda}A_{\mu} = A_{\mu}A_{\lambda}\) by Lemma 4.4. Thus we have

\[
\phi^2 \sum_{\lambda=q+1}^{p} A_{\lambda}^2 X = - \sum_{\lambda=q+1}^{p} A_{\lambda}^2 X + \sum_{\alpha=q+1}^{p} U_{u(A_{\alpha}^2 X)} = 0.
\]

However, as already shown in the proof of Lemma 4.2, \(u(A_{\alpha}^2 X) = 0\) and consequently \(\sum_{\lambda=q+1}^{n} A_{\lambda}^2 X = 0\), that is, \(A_{\lambda} = 0, \lambda \geq q+1\). Thus \(N_xM\) is a \(Q\)-invariant subspace of \(N_0M\). Since \(H_0M\) is maximal, it follows that \(N_xM \subset H_0M\). Let \(\xi \in H_0M\) and \(\eta \in F^\perp \oplus G^\perp \oplus H^\perp\). Then there exist \(Y_1, Y_2, Y_3 \in D^\perp \subset TM\) such that

\[
\eta = FY_1 + GY_2 + HY_3.
\]

Therefore it is clear that

\[
\langle \xi, \eta \rangle = -\langle F\xi, Y_1 \rangle - \langle G\xi, Y_2 \rangle - \langle H\xi, Y_3 \rangle = 0
\]

since \(H_0M\) is \(Q\)-invariant. This means that \(\xi \in NM\) and consequently \(NM = H_0M\). This completes the proof.

Remark. As already shown in the proof of Lemma 4.4, it suffices to assume only the condition (4.4)(a) instead of the condition "lift flatness" in order to prove Theorem 4.5.

References

Jung-Hwan Kwon
Department of Mathematics Education
Taegu University
Taegu 705-714, Korea

Jin Suk Pak
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea