CORRECTIONS TO "A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES"

SEHIE PARK

ABSTRACT. This is to correct Section 4 of our previous work [1].

Section 4 of our previous work [1] is incorrectly stated and our aim in this note is to replace the first part of Section 4 (from the beginning to the line 23 of page 815) by the following:

4. New fixed point theorems for condensing multimaps

In this section, we deduce new theorems for condensing maps.

Let X be a closed convex subset of a t.v.s. E and C a lattice with a least element, which is denoted by 0. A function $\Phi : 2^X \to C$ is called a measure of noncompactness on X provided that the following conditions hold for any $A, B \in 2^X$:

1. $\Phi(A) = 0$ if and only if A is relatively compact;
2. $\Phi(\overline{A}) = \Phi(A)$; and
3. $\Phi(A \cup B) = \max\{\Phi(A), \Phi(B)\}$.

It follows that $A \subseteq B$ implies $\Phi(A) \leq \Phi(B)$.

The above notion is a generalization of the set-measure γ and the ball-measure χ of noncompactness defined in terms of a family of seminorms or a norm.

For a measure Φ of noncompactness on E, a map $T : X \to E$ is said to be Φ-condensing provided that if $A \subseteq X$ and $\Phi(A) \leq \Phi(T(A))$, then A is relatively compact; that is, $\Phi(A) = 0$.

Received May 10, 1999.
1991 Mathematics Subject Classification: Primary 47H10, 54C60; Secondary 54H25, 55M20.
Key words and phrases: measure of noncompactness, Φ-condensing map, q-admissible.
From now on, we assume that Φ is a measure of noncompactness on the given set X in a t.v.s. E or on E if necessary.

Note that any map defined on a compact set or any compact map is Φ-condensing. Especially, if E is locally convex, then a compact map $T : X \to E$ is γ- or χ-condensing whenever X is complete or E is quasi-complete.

The following is well-known; for example, see Mehta et al. [1997].

Lemma. Let X be a nonempty closed convex subset of a t.v.s. E and $T : X \to X$ a Φ-condensing map. Then there exists a nonempty compact convex subset K of X such that $T(K) \subset K$.

Note that even if X is admissible, we can not say that K is admissible in E. Therefore, we need the following concept:

A nonempty subset X of a t.v.s. E is said to be q-admissible if any nonempty compact convex subset K of X is admissible. We give some examples of q-admissible sets as follows:

1. Any nonempty locally convex subset of a t.v.s.
2. Any nonempty subset of a locally convex t.v.s.
3. Any nonempty subset of a t.v.s. E on which its topological dual E^* separates point. Note that any compact convex subset of such a space E is affinely embeddable in a locally convex t.v.s.; see Weber [1992b].

It should be noted that an admissible t.v.s. (in the sense of Klee [1960]) and a q-admissible t.v.s. can be also defined.

From Theorem 1 and Lemma, we have the following:

Theorem 2. Let X be a q-admissible closed convex subset of a t.v.s. E. Then any Φ-condensing map $F \in \mathcal{B}(X, X)$ has a fixed point.

Proof. By Lemma, there is a nonempty compact convex subset K of X such that $F(K) \subset K$. Since $F \in \mathcal{B}(X, X)$, there exists a closed map $\Gamma \in \mathcal{B}(K, K)$ such that $\Gamma(x) \subset F(x)$ for all $x \in K$. Since Γ is compact and K is admissible, by Corollary 1.1, it has a fixed point $x_0 \in K$; that is, $x_0 \in \Gamma(x_0) \subset F(x_0)$. This completes our proof. \square
COROLLARY 2.1. Let \(X \) be a \(q \)-admissible closed convex subset of a t.v.s. \(E \). Then any closed \(\Phi \)-condensing map \(F \in \mathcal{B}(X,X) \) has a fixed point.

COROLLARY 2.2. Let \(X \) be a \(q \)-admissible closed convex subset of a t.v.s. \(E \). Then any \(\Phi \)-condensing map \(F \in \mathcal{B}^\sigma(X,X) \) has a fixed point.

In the remainder of this section, we list more than ten papers in chronological order, from which we can deduce particular forms of Theorem 2.

Darbo [1955]: Recall that Kuratowski defined the measure of noncompactness, \(\alpha(A) \), of a bounded subset \(A \) of a metric space \((X,d) \):

\[
\alpha(A) = \inf\{\varepsilon > 0 : A \text{ can be covered by a finite number of sets of diameter less than or equal to } \varepsilon\}.
\]

Let \(T : X \to X \) be a continuous map. Darbo calls \(T \) an \(\alpha \)-\textit{contraction} if given any bounded set \(A \) in \(X \), \(T(A) \) is bounded in \(X \) and

\[
\alpha[T(A)] \leq k\alpha(A),
\]

where the constant \(k \) fulfills the inequality \(0 \leq k < 1 \).

Darbo [1955] showed that if \(G \) is a closed, bounded, convex subset of a Banach space \(X \) and \(T : G \to G \) is an \(\alpha \)-contraction, then \(T \) has a fixed point.

Sadovskii [1967]: Introduced the notion of condensing maps in Banach spaces and obtained a form of Corollary 2.1 extending the above result of Darbo.

\textit{This is the end of our corrections.}

REMARKS. 1. Our failure in [1] is mainly based on the unjustified fact that every admissible set is \(q \)-admissible. It would be interesting to prove or disprove this statement.

2. Until now, the results in Section 4 were used for locally convex t.v.s. only. There exists a measure of noncompactness on a certain subset in a more general t.v.s.
3. Similarly, in our another previous work [2, Theorems 3 and 4], the admissibility of X should be replaced by the q-admissibility. Moreover, in [3, Theorem 1], $\text{cl} f(D)$ should be replaced by D. Further, each of [3, Theorems 2-4] can be slightly improved by replacing the admissibility of K by that of D.

ACKNOWLEDGEMENT. The author would like to express his gratitude to those who gave kind comments to [1]; especially, to Professors C. Corduneanu, Lai-Jiu Lin, and Do Hong Tan.

References

Department of Mathematics
Seoul National University
Seoul 151–742, Korea
E-mail: shpark@math.snu.ac.kr