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SOME REMARKS ON COASSOCIATED PRIMES

K. DIvAANI-AAZAR AND M. TousI

ABSTRACT. The purpose of this paper is to develop the theory of
coassociated primes and to investigate Melkersson’s question [8].

0. Introduction

Let R be a commutative ring with identity. There have been four
attempts to dualize the theory of associated prime ideals by I. G. Mac-
Donald [6], L. Chambless [4], H. Zéschinger [14] and S. Yassemi [12]. In
(12], it is shown that, in the case the ring R is Noetherian, these defini-
tions are equivalent. However Yassemi’s definition is “in some sense” the
best one because it constructs a connection between the theory of associ-
ated prime ideals and its dual through the Matlis duality. In section one,
we give a new description of Yassemi’s definition by using the concept of
finitely embedded modules (the dual notion of finitely generated). Next,
we will prove some dual results and provide some counterexamples.

Let R be a Noetherian ring and let M be a representable module of
finite Goldie dimension. (If the module has a secondary representation,
we simply call it representable.) Melkersson [8] conjectured that, for any
flat R-module F', the module Hompg(F, M) is representable. In section 2,
we give an affirmative answer to this question in a special case. Also, in
general, we show that the set of coassociated prime ideals of Homg(F, M)
is finite. This is an evidence which supports the conjecture.

Throughout, we use Max(R) to denote the set of all maximal ideals
of R. For any ring homomorphism f: R — S, we let f* : Spec(S) —
Spec(R) be the induced map.
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1. Some Dual Results

It is easy to see that, for an R-module M, the set Assg(M) of asso-
ciated prime ideals of M is equal to

{p € Spec(R) :
p = (0 :g N) for some finitely generated submodule N of M}.

The definition of the dual notion of “finitely generated”is given sepa-
rately by P. Vamos [11] and F. W. Anderson and K. R. Fuller [1]. It
follows from [1, Proposition 10.7] and [11, Lemma 1] that these def-
initions coincide. We use Vamos’s definition. Let, for an R-module
M, E(M) denote its injective envelope. An R-module M is said to be
finitely embedded (f.e.) if

E(M)=E(R/m;)® E(R/my)®---® E(R/my),
where each m; is a maximal ideal of R. It is natural, for an R-module

M, to define the set Coassp(M) (resp. C/O-;S_;R(M Yof coassociated (resp.
weakly coassociated) prime ideals of M as follows.

DEFINITION 1.1. Coassg(M) = {p € Spec(R) : p = (0 :r L), for some

f.e. homomorphic image L of M} (resp. Coassg(M) = {p € Spec(R) : p
is minimal over (0 :p L), for some f.e. homomorphic image L of M}.

The following lemma shows that this definition is equivalent to
Yassemi’s one ([12], [13]).

LEMMA 1.2. Let M be an R-module. Then
(i) p € Coassg(M) if and only if there exists a homomorphic image K of
M such that K C E(R/m) for some maximal ideal m and p = (0 :g K).

(it) p € Coassg(M) if and only if there exists a homomorphic image K of
M such that K C E(R/m) for some maximal ideal m and p is minimal
over (0 :g K).

Proof. (i) The proof of {12, Lemma 1.5] shows that if L is a fe. R-
module with (0 :g L) = p, a prime ideal of R, then there exists a
homomorphic image K of L such that (0 :g K) = p and K C E(R/m)
for some maximal ideal of m of R. The converse follows from the fact
that if E # 0 is an indecomposable injective module, then it is an injec-
tive envelope of every non-zero submodule of itself (see [10, Proposition
2.28)).

(i) Similar to (i). O
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We summarize some important properties of coassociated (resp. wéakly
coassociated) prime ideals from [12] and [13] in the following fact and
we may use them without further comment.

FACT 1.3. Let M be an R-module. _
(i) p € Coassp(M) (resp. p € Coassg(M)) if and only if there ex-
ists m € Max(R) such that p € Assg(Homg(M, E(R/m))) (resp. p €

Kgéjg(HomR(M, E(R/m))) (here, for an R-module M, Assgp(M) denotes
the set of Bourbaki’s weakly associated prime ideals of M).

(ii) Coassp(M) # ¢ if and only if M # 0.
(iii) If R is a Noetherian ring, then Coassg(M) = Coassg(M).

(ivyIf0 — M — M — M" — 0 is an exact sequence of R-
modules, then

Coassp(M") C Coassp(M) C Coassg(M') U Coassp(M")

and

———

Coassp(M") C Coassp(M) C Coassp(M') U Coassp(M").

(v) If M is representable, then &)-a:;R(M ) = Attg(M).

We need the following lemma to prove 1.5 and 1.7.

LEMMA 1.4. Let S be a commutative Noetherianringand f : R — S
a ring homomorphism. Let M be an S-module. Then Coassp(M) =
Coassp(M).

Proof. 1t easily follows from 1.3 (i) and [5, Lemma 1.1]. a

It is well-known that if A is an Artinian R-module, then Assg(A) =
Suppg(A) C Max(R). The third part of the following lemma provides
the dual of this fact.

LEMMA 1.5. (i) Coassg(R) = Max(R).
(ii) If M is a finitely generated R-module, then Coassg(M) C Max(R).
(iii) If N is a Noetherian R-module, then

Coassg(NN) = Cosuppg(N) C Max(R),

where, for an R-module M, Cosuppy(M) is the set of prime ideals p such
that there exists a f.e. homomorphic image L of M with p D (0 :g L)
(see [12, 2.1]).
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Proof. (i) It is clear that Max(R) C Coassg(R). Let p € Coassg(R).
Then there exists an ideal a of R such that (0 :z R/a) =p, and R/a C
E(R/m) for some m € Max(R). Thus a = p and, by [10, Proposition
2.28], E(R/a) & E(R/m). Therefore, by [10, Corollary of Lemma 2.31],
p=m.

(ii) Since M is a homomorphic image of a direct sum of finite copies of
R, the claim follows from (i) and 1.3 (iv).
(iii) It is clear that Coassg(N) C Cosuppg(N). Let p € Cosuppg(IV).

Then there exists q € C/oa\s:R(N) such that g C p. Set S = R/(0:g N).

It follows from 1.4 that Coassg(IN) = Coassg(/N). Thus the conclusion
follows from (ii). O

For an Artinian R-module A, Assg(A) is finite. But 1.5 (i) provides
examples of Noetherian modules with an infinite number of coassiated
prime ideals. In fact, in the first draft of this paper, we have proved 1.5
(i) only for Z, the ring of integers, but S. Yassemi informed us that our

argument can be applied to any commutative ring. Also, note that 1.5
(i) extends {12, Lemma 4.5].

PROPOSITION 1.6. ([9, Proposition 4.1]) Let f : R — S be a
ring homomorphism and M be an S-module. Suppose that M is repre-
sentable as an S-module, then M is representable as an R-module and

Attp(M) = fr(Atts(M)).

THEOREM 1.7. Let f : R — S be a ring homomorphism and M be
an S-module.
(i) If S is Noetherian, then f*(Coasss(M)) C Coassg(M).
(ii) If R and S are both Noetherian and for any proper R-submodule N
of M, SN # M, then f*(Coassg(M)) = Coassp(M).
(iii) If f is surjective, then f*(Coassg(M)) = Coassgp(M).

Proof. (i) Let p € f*(Coasss(M)). Then there exists an Artinian S-
homomorphic image L of M and a prime ideal q of S such that (0 :s
L) =qand p = f~!(q). Consequently, by [6, 2.2], q € Attg(L). Since L
is representable as an S-module, it follows from 1.6, 1.3 and 1.4 that

Coassp(L) = Coassr(L) = Atta(L) = f*(Atts(L)).

Therefore p € Coassg(L) C Coassp(M).
(ii) Let p € Coassp(M). Then there is an R-submodule N of M such
that M/N is an Artinian p-secondary module. It follows from the exact
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sequence
M/N — M/SN — 0

that Coassp(M/SN) C Coassg(M/N) = {p}. Since M # SN, Coassg
(M/SN) # ¢ and so Coassg(M/SN) = {p}. As M/SN is an Artinian
S-module, by 1.3 and 1.6,

Coassp(M/SN) = f*(Coassg(M/SN)) C f*(Coassg(M)).

Therefore p € f*(Coasss(M)).
(iii) A subset N of M is an R-submodule of M if and only if it is an
S-submodule of M so the result follows from [11, Proposition 1*]. O

Now, we give an example to show that the inclusion in Theorem 1.7
(1) might be strict.

EXAMPLE 1.8. Let R be a Noetherian integral domain and p be a
prime ideal such that p ¢ Max(R) and p is not a minimal prime ideal.
Let f : R — R, be the natural map. If Coassg(R,) = f*(Coassg,(Ry)),
then it follows from 1.5(1) that Coassg(R,) = {p}. But, by [15, Folgerung
4.7]

Coassg(R,) = {q € Spec(R) : 9 C p}.
This is a contradiction.

Let M be an R-module and Y be a subset of Assg(M). There is
a submodule N of M such that Assp(N) = Y and Assp(M/N) =
Assp(M)—Y. (Seee.g. [3, Ch. IV, §1, Proposition 4]) However, the fol-
lowing example shows that this property does not hold for coassociated
prime ideals.

EXAMPLE 1.9. Let (R, m) be a Noetherian local ring with dim R > 2.
Let Z be the set of height one prime ideals of R. Then Z is a infinite
discrete subset of Spec(R). Let Y be a countable infinite subset of Z.
Since (0 :g(rsp) p) is p-secondary, Coassg(0 :gryp) p) = {p}. Let M =
Bpespec(r) (0 :Er/p) P)- Then Coassp(M) = Spec(R). But it follows from
[15, Folgerung 1.6] that there is no submodule N of M with Coassg(N) =
Y.

2. On a Question of Melkersson

In this section, R will denote a Noetherian ring. An R-module M is
said to have finite Goldie dimension, if M does not contain an infinite
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direct sum of non-zero submodules, or equivalently E(M) decomposes
as a finite direct sum of indecomposable injective submodules.

The following result gives an affirmative answer to Melkersson’s ques-
tion [8], in a special case.

THEOREM 2.1. Let (R, m) be a complete Noetherian local ring and
dimR < 1. Suppose the R-module M is representable and it has fi-
nite Goldie dimension. Then, for any flat R-module F, the module
Hompg(F, M) is representable.

Proof. Tt follows from [2, Theorem 4.1} that E(R/p) is reflexive for all
p € Spec(R). Since any finite direct sum of reflexive modules and any
submodule of a reflexive module is also reflexive, the module M is reflex-
ive. That is, if N = Homg(M, E(R/m)), then M = Homg(N, E(R/m)).
By {13, Theorem 5.1 (d)], the zero submodule of N has a primary de-
composition. We have Hompg(F, M) = Hompg(N, Homg(F, E(R/m)), so
[13, Theorem 5.1(b)] implies that Hompg(F, M) is representable. O

We know that, for a representable R-module M, the set Coassg(M)
is finite. The following result shows that Coassp(Homg(F, M)) is finite.

THEOREM 2.2. Suppose that the module M is representable and that
it has finite Goldie dimension. Then, for any flat R-module F, the set
Coassg(Hompg(F, M)) is finite.

Proof. Let Assp(M) = {p1, P2, ..., pa}. The proof is by induction on
n. If n = 1, then M has the structure of an Artinian module over Ry,
and so Homp(F, M) = Homp, (F ®r Ry,, M). Hence, in this case, the
result follows from [8, Proposition 5.3] and 1.6.

Now, let » > 1 and p; be a maximal element of Assgp(M). Then
there is ¢ € py — Ups. Set S = {z* : i € No}. By [8, Theorem
=2

2.1], Tpr,(M) is representable and it follows from [7, Theorem 18.4]
that S~!M has finite Goldie dimension, Assg(T'r.(M)) = {p:} and
Assp(S~'M) = {pa,...,pn}. Therefore, by [8, Theorem 5.1], it follows
from the canonical exact sequence

0 — Tpe(M) — M — S'M—0
that the sequence

0 — Homg(F, Tgo(M)) — Homg(F, M) — Homg(F, S7'M) — 0
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is exact. Hence
Coassp(Homp(F, M)) C Coassg(Hompg(F, g, (M)))

U Coassp(Hompg(F, S~ M))
and the claim follows by induction. g
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