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THE LEAST NUMBER OF COINCIDENCES WITH
A COVERING MAP OF A POLYHEDRON

JERZY JEZIERSKI

ABSTRACT. We define the coincidence index of pairs of maps p,
f : X - X where p is a covering of a polyhedron X. We use
a polyhedral transversality Theorem due to T. Plavchak. When
p = identity we get the classical fixed point index of self map of
polyhedra without using homology.

1. Introduction

The fixed point index can be defined for self maps of quite arbitrary
spaces (for example, ANR’s [4]). In contrast, to define the coincidence
index of a pair of maps ¢, f : M — N one has to assume that M and N
are manifolds [15, 2, 9]. Since the fixed points may be regarded as
coincidences of the pair id, f : X — X, the following question arises:
what one has to assume on the map g to get a coincidence index on a
larger class of spaces than manifolds? In this paper we consider a pair of
maps p, f : X — X where p is a covering map of a polyhedron X and we
construct the coincidence index of this pair. The most natural method,
converting the formalism of [4], cannot be applied here since the domain
does not coincide with the range space and the commutativity property
cannot be reformulated into our situation. We bypass this difficulty
applying a version of the transversality theorem (Theorem B in [13])
given below as Theorem 1.1.

In this paper by a polyhedron we will mean a polyhedron which can
be imbedded as a closed subset of a Euclidean space R™ (unless other
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stated), i.e., finitely dimensional, locally finite and having at most count-
able number of simplices in a (any) triangulation (Thm. 3.2.9 in [16]).
Simplex denotes open simplex.

Let p: X — X be a covering of a polyhedron. We fix a triangulation
K of X. It induces the triangulation K of X. Then we regard X x I with
a triangulation K' without adding new vertices and then we consider a
subdivision K" of K’ [14]. Let W C X x I be a compact subpolyhedron
in K". Define 7: X x I = X by n(%,t) = pi.

THEOREM 1.1. (compare Thm. B in 1.1) Any PL-map f : W — X
(with the respect to triangulations K" and K) with C(r, f) C int W can
be deformed rel bdW to a PL-map f' such that C(p, f') is 1-dimensional
PL-manifold. If moreover C(p, f(.,0)) U C(p, f(.,1)) is finite and con-
tained inside simplices of maximal dimension then the above deformation
may be also constant on W N (X x {0,1}).

Proof. Theorem B in [13] implies the above for X = X a compact
polyhedron and W = X x I. The idea of that proof is to push the
coincidences (called there fixed points) off lower dimensional skeleta of
X x I. This is obtained in many steps but in each step the given map
is deformed inside the star of a simplex containing a coincidence. This
procedure can be applied in our situation. First we choose a subdivision
of X x I so fine that the star of any simplex, containing a concidence, is
contained in W. On the other hand since this star is small, it is contained
in the preimage 71U of an open contractible subset of U C X. But
this preimage splits into components each of them mapped by 7 as the
product map onto U (7 : 771U = |JU; x I — U). Now we may apply
locally each step of Plavchak construction moving the coincidences into
higher dimensional simplices. Since the subdivision of W is fine, the
carrier of this deformation is contained inside W.

If C(p, f(.,0)) UC(p, f(.,1)) is finite and contained inside maximal
simplices then we may assume that f(z,t) does not depend on ¢t for
0<t<eandforl—e<t<1forane>0. Since then the coincidence
set is good near W N (X x {0,1}) the construction can be done inside
WNX x(e,1-¢)) (for an € € (0,¢)). d

Now suppose that f : W — X satisfies the above theorem. Let J be a
component of the 1-manifold C(n, f) C int W. Let us fix an orientation
(direction) of J. Let (zo,%5) € J be a point lying in a maximal simplex
& € K". Denote dim& = g+ 1 and let o € K be the simplex for which
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7(6) C 0. Since & is maximal and contains a coincidence, dimo = ¢ and
f(6) = 0. Let Dqy be a g-disk transverse to JN& C G at the point zo.
We define the coincidence index ind(m|, f}; o) of the pair 7, f| : Dy — o
as the degree of Dy > (z,t) — p(z) — f(z,t) € o (we fix an orientation
of 0 which determines the orientation of ¢ x I and we orient Dy to get
the equality orientation Dy + orientation J = orientation o x I).

LEMMA 1.2. The coincidence index ind(mp,, fp,; o) of the pair mp,,
fo, : Do — o does not depend on the choice of a point (zo,to) €
J N (maximal simplex of K”) where J is a fixed component C(m, f).

Proof. Since all but a finite number of points from J belong to maxi-
mal simplices, we may present J = J; U---U J, where each J; is closed,
connected, is lying in the preimage (7~!) of a contractible subpolyhe-
dron of X and J; N J;;, contains a point in a maximal simplex. Now it
is enough to prove our claim for each J;. Thus it remains to consider
the trivial covering X = X. Then 7(z,t) = z.

Let us fix a PL—imbedding X C RY (N € N) and a continuous
retraction 7 : U — X of a neighbourhood U C RY. Denote Uy =
{(z,t) € U x I;(r(z),t) € W}. This is an open neighbourhood of
W C RY x 1. We define f' : Uy — X by f'(z,t) = f(r(z),t). Notice
that C(m, f') = C(m, f). We fix a point (zg,%) € JNG where 6 € K"is
a ¢ + 1-dimensional maximal simplex. Let D C Uy be N—dimensional
disk transverse to J C RY x R at the point (zp,%). Then Dy =DNé&
is gq-disk. Notice that (zg,?) is the isolated coincidence point of the
restrictions 7p, f, : D — RY. It remains to prove:

1. ind(7p, fp; (%o, o)) does not depend on the choice of the point
(20, t0) € J.

2. ind(mp, fp; (o, te)) = ind(mpy, fp,; (%0, %))
for (zo,tp) € J N {maximal simplex}.

Ad 1. Obvious, since J C int Uy is connected and int Uj is open subset
of RNV+1,

Ad 2. Fix (zg,t). First we make a local correction of the projection
r : U — X which changes no side of the proved equality. Denote by
Vo, Vi and V; € RV*! the affine subspaces: generated by Dy = & N D,
orthogonal to & at (zg, tp) and generated by JN& respectively. Their di-
mensions are ¢, N —q and 1 respectively. Now we notice that for arbitrar-
ily fixed €, > 0 there is an e-homotopy {r;} which is constant outside
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B((z9,t);6) — X such that ro = r and for a §; (6 > d; > 0) the restric-
tion 71 : B((2o,t); 61) — X is an affine map sending B((zg,t0); 1) N VL
to the point (zg,tp). Since the homotopy ¢ is constant on X, C(w, fr;)
is still the same and the indices do not vary. Thus we may prove the
equality under the assumption that r in a neighbourhood of (zg,1,) is
affine and r(B((zo,t); ;1) N V.) = zo. Let Wy, W, C RY denote the
subspaces tangent and orthogonal to o respectively. Then f[, is locally
given by Vo ® V. 3 (z,y) = (fz,20) € Wod W,
Since 7(Vp) C Wy and w(Vy) C W,

ind(ﬂ'Dy fba ($07 to)) = deg(ﬂ-D - fbv (.’L'(), tO))
= deg(ﬂ-"b - f"/07 ("I:Oa tO)) : deg(WV_L - fi) (x07 tO))
= deg(mp, — leo; (zo,to)) - deg(my, — o; (2o, o))

= ind(7py, fpy; (T0, t0)) - 1 = ind(mpy, fp,; (2o, to))-

2. Index

Let X be a locally finite polyhedron. A point z € X is called Fu-
clidean iff a neighbourhood of z in X is homeomorphic to R* for some
n € N. The set of all Euclidean points of X will be denoted by &(X).
Notice that in any locally finite polyhedron the subset &(X) is dense
in X: all points in maximal simplices (of a fixed triangulation) are Eu-
clidean. Let p: X — X be a covering and let U C X be an open subset.
Let f : U — X be a continuous map whose coincidence set C(p, f) is
compact. We will define the coincidence index of such map.

The above map f will be called € — map if C(p, f) is a finite subset
of &(X). We define the index of an isolated coincidence point zy €
C(p, f) N &(X) as ind(p, f : zo) = deg(p — f; o) where deg denotes the
degree of the map V' 3 z — p(z) — f(z) € V [12, 5]. Here V',V denote
Euclidean neighbourhoods of z¢ € U, p(zy) € X respectively, satisfying
p(V"YUf(V') C V and with orientations compatible via p. For an &-map
f we define ind(p, f;U) = >__ind(p, f; x) where the summation runs the
(finite) set C(p, f).

For any continuous map f : U — X with C(p, f) compact we define
ind(p, f;U) = ind(p, f'; U) where f' is an &-map C-compactly homotopic
to f i.e. there is a homotopy F : U x [0,1] = X from f to f' with
C(p, F) = {(z,t) € U x [0,1];p(z) = F(z,t)} compact.
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LEMMA 2.1. The above definition is correct

Proof. We have to prove that:

1. Any continuous map f : U — X with C(p, f) compact is C-
compactly homotopic to an €-map fp.

2. If fo, f1 : U = X are C-compactly homotopic €-maps then ind(p, fo;
U) = ind(p, f1; V).

Ad 1. Let K be a triangulation of the polyhedron X and let K be
the induced triangulation of X. If K is chosen fine enough then there is
a subpolyhedron W C K that the star of any simplex in W containing a
coincidence is contained inside W. We may apply the Hopf construction
to the restriction f : W — X [1]. Recall that this construction deforms
f to a map with finite number of fixed points each in a maximal simplex
by pushing the fixed point set off the lower dimensional skeleta. It is
done in many steps but in each step the given map is deformed only in
the star of a simplex containing a fixed point. Since the restriction of p to
any star is a homeomorphism hence we may adapt the Hopf construction
to our situation. By the above, the final deformation is constant outside
the interior of W hence it can be extended by the constant homotopy
onto the whole U.

Ad 2. Fix such triangulation K of X that all the points of the (finite)
set p(C(p, fo)UC(p, f1)) C €(X) lie inside maximal simplices o1,-- - , 0,
of K. There is a homotopy, constant outside |J;_, 0, from fy to a
PL—map f; with fixed point set finite and contained in |J_, o; (first we
replace fo by PL-map with no coincidences outside | J;_, 0; and then we
apply Hopf construction). Notice that ind(p, fo) = ind(p, f}).

We replace fi by a PL-map f, with similar properties. It remains to
show that ind(p, f§) = ind(p, f}).

Since f3, f1 are C—compactly homotopic PL-maps, there exists a
C—compact PL-homotopy F. Now the compact set C(p, F) is con-
tained inside a compact subpolyhedron W C U. We apply Theorem 1.1
to make C(p, F') a 1-manifold. Figure 1 illustrates the possible positions
of the components of C(p, F) in X x I.
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Z’,l y
(@.1) (v:1) (y,1)

(x,0) (x',0) (z,0)

. Then by lemma 1.2:
ind(p, fg; (¢,0)) = —ind(p, fg; (', 0)),
ind(p, f1; (y,1)) = —ind(p, f1; (¥, 1)),

ind(p, fo; (2,0)) = ind(p, f1; (2, 1))-
Summing over all components we get the desired equality ind(p, fo; U) =
ind(p, f3; U). O
REMARK 2.2. If X is a manifold then the above definition gives the
coincidence index (see [3] oriented and (7] nonoriented case) of the pair

p, f.

REMARK 2.3. If X is a polyhedron and p = id then the above defini-
tion gives the ordinary fixed point index [4]. The above may be also re-
garded as the alternative definition which does not use homology. Recall
the scheme: we base on the definition of the degree of amap ¢ : U — R"
(U C R* open subset) [12], [5]. This allows to define the fixed point in-
dex of €-selfmaps of a polyhedron. Now Theorem 1.1, Hopf construction
and Lemma 1.2 allow to extend the definition on all selfmaps.
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Properties

ADDITIVITY. p: X = X a covering of polyhedron, U C X open
subset, f : U — X a map with C(p, f) compact. Suppose that U =
Uy U---UUgand U;NC(p, f) are compact mutually disjoint sets. Then
ind(p7 f; U) = Zi ind(pa f; Uz)

UnITs. Let fo: U — X denote the constant map into 2o € X. Then
ind(p, fo; U) = #p~*(zo)NU. In particular if U = X then ind(p, fo; U) =
multiplicity of the covering p.

FIXED POINTS. ind(p, f : U) # 0 implies C(p, f) # 0.

HOMOTOPY INVARIANCE. Let U C X x [0,1] be an open subset
and F : U — X a continuous map with C(p, F) compact. Denote
U ={z € X;(z,t) €U}, f: Uy = X, fi(z) = F(z,t) (0<t<1).
Then ind(p, fo; Us) = ind(p, f1; Us).

Proof. As in the proof of lemma 1.2 we may assume that C(p, F) is
1-manifold. O

3. Lefschetz formula

We will show that the global index of the pair p, f : X — X is equal
to the trace of an induced homomorphism on homology. Here we will
consider homology groups with rational coefficients. We use the method
from [8]. Let start by recalling:

LeMMA 3.1. Let K denote a triangulation of a compact polyhedron
W and let K' be its subdivision. Then the homomorphism p : C,(K) —
C.(K') given by p(o) = ) o; induces the isomorphism of homology
groups (the right hand side denotes the sum of all simplices of K' con-
tained in o with the orientation inherited after o).

Let p : X — X be a finite covering of a polyhedron. Let K denote
a fixed triangulation of X, K the induced triangulation of X, K’ a
subdivision of K and f : X — X a PL map (with the respect to K’
and K) for which C(p, f) is compact. By the Hopf construction we may
assume that C(p, f) is finite and contained inside maximal simplices.
Taking the subdivision K’ fine enough we may assume that if & C &
and f maps &' onto p& then f is expanding there [10].
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We consider the composition
C.(K) S C(K) D cu(k) 5 Cu(K)

where ¢ : C,(K) — C.(K) denotes the transfer map t(c) = 3. &; (sum of
all lifts of o) and f, denotes also the chain map induced by the PL-map
f. Let us fix simplices & € K, ' € K’ such that ' C 5. We notice that
if f does not map &’ onto pé then ¢ does not occur in tf.6 € C’,,(f( ).
If f maps ¢’ onto p& then coefficient of & in tf.6 is ¢ = +1(-1) if
[ preserves (reverses) the orientation. Then fj;6' — p&’ is a (linear)
homeomorphism hence by the Brouwer theorem f; has a coincidence
with the projection p. Moreover this coincidence must lie inside ' C &
hence these simplices are maximal. Since f| is expanding on &', there
can be no other coincidence.

On the other hand since the map f| : 5; = p(d;) is expanding, for any
coincidence Z; € o;

ind(p, f; ;) = deg(p — f; &) = deg(p(Z:) — f; ;) = (-1)"™%c;.

Thus
> _(~Dftrace(tfupe) = Y _(-1)%"%¢; = 3 ind(f, g &) = ind(p, f).
k=0 & &

On the other hand: the Hopf Trace Theorem (comp Thm. 1D2 in [1])
implies.

LEMMA 3.2. The alternating sums of traces of the chain maps
C.(K) S C.(K) 5 oK) 5 C.(K)
and of the induced homology homomorphisms
HE)L2HX) D H(X) D HX)
are equal : Y oo (= 1)5tr(tfup) = Y oo (=1)5tr (L. fo).

We define the Lefschetz number of the pair p, f as the above alternat-
ing sum of traces and we denote it by L(p, f). The above implies

THEOREM 3.3. (Normalization) For any pair of maps p, f : X — X,
where X is a compact polyhedron and p is a finite covering, the equality

L(p, f) = ind(p, f) holds.

REMARK 3.4. Since tr(af) = tr(fa), the Lefschetz number can be
defined by L(p, f) = Y seo(—1)Ftr(fit.).
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4. Minimizing the number of coincidences

In this section we define the Nielsen number of the pair p, f and we
show that this number can realized in the homotopy class of f (Wecken-
type theorem) provided X satisfies the conditions of [11].

Let p,f : U - X (U C X) be as before. We say that two points
z,5' € C(p, f) are Nielsen equivalent if there exists a pathw : I — U
from z to z’ such that fw and w are fixed end point homotopic in X.
This relation divides C(p, f) into classes called Nielsen classes. A Nielsen
class is called essential if its coincidence index is nonzero. The number of
essential classes is called the Nielsen number and is denoted by N(p, f).
If p = id then N(id, f) equals to the ordinary fixed point Nielsen number
N(f) [1], [10]. As in the case of fixed points N(p, f) has two fundamental
properties:

PropPERTY 4.1. If f,f' : U — X are compactly homotopic then
N(p,f)=N(p, f).

PROPERTY 4.2. #C(p, f) > N(p, f).

We will show that N(p, f) is the largest number satisfying the above
two properties if X satisfies the following two conditions from [11].

DEFINITION 4.3. We say that X is a W J-polyhedron if

1. X has no locally cut-points (i.e. if an open subset V C X is
connected then so is V — z (for any z € X)).

2. In a (hence any) triangulation there is a 1-simplex being the (proper)
face of at least three simplices.

THEOREM 4.4. (Wecken-Jiang) If p : X — X is a finite cover of a
compact W J-polyhedron then any map f : X — X is homotopic to a
map with exactly N(p, f) coincidences.

Proof. The construction given below allows to replace two coinci-
dences in the same Nielsen class by one coincidence. Thus we may
reduce each Nielsen class to a point. Since p is a local homeomorphism,
we may remove any inessential class, as in the case of fixed points [1}. [

Now we show how to replace two coincidences in Nielsen relation
by one point. We will sketch how one may adapt the results of [11]
to this situation (in [11] the theorem is proved for fixed points, i.e.
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= identity). We may assume that there is only a finite number of co-
incidences each lying inside a maximal simplex. Moreover, using a local
homeomorphism, if necessary, we may also assume that a # b € C(p, f)
implies pa # pb. Let a,b € C(p, f) be Nielsen related and let a path &
establish this relation. Put w = p&. Since w(0) = pa # pb = w(1), w is
homotopic to a normal PL—arc in X (see [11] for definition). Since this
homotopy can be lifted, we may assume that w is such arc. Moreover
we may assume that w(s) ¢ p(C(p, f)) for 0 < s < 1 and the conditions
a, B of lemma 3.4 from [11] are satlsﬁed (for o being the face of at least
three simplices). Put we(s) = w(s(l — esin(ws)))(for a small € > 0).
Then the paths w, w,, f& have the same ends (pa and pb), are homotopic
and we(s) # w(s) # fa(s) for 0 < s < 1. Now we may apply lemma 5.1
[11] for (¢ = w,po = we,p1 = f@) and we get a homotopy h; : I — X
satisfying ho(s) = f@(s), hi(s) = we(s), hi(s) # w(s). Then we define
h, : @ — X putting h}(&(s)) = hy(s). Now
@

ho(@(s)) = ho(s) = fis(s)
hi(@(s)) = hl(S) we(s)
h(@(s)) = he(s) # w(s).
Since (by the last inequality) C(p, h}) = {@(0),@(0)} does not depend
on t, the map ¢ : X x 0U (©[0,1] x I) — X given by ¢(z,0) = f(z),
#(@(s),t) = hi(&(s)) extends onto the whole X x I to a homotopy F
that C(p, F(.,t)) does not depend on t € [0, 1] (compare Lemma 2.1 in
[11]). Thus f is homotopic to a map f’ that f'(¥(s)) = we(s) is close
to w(s) = p(@(s)) and C(p, f’) = C(p, f). On the other hand p is a
homeomorphism between some neighbourhoods U (of ©[0,1] € X) and
U (of w[0,1] C X). This homeomorphism allows to apply lemmas VIII
C3 and VIIIC? from [1] and move the coincidence point b to a.
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