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CENTRAL LIMIT THEOREMS FOR
BELLMAN-HARRIS PROCESSES

HYE-JEONG KANG

ABSTRACT. In this paper we consider functionals of the empiri-
cal age distribution of supercritical Bellman-Harris processes. Let
f : Rt — R be a measurable function that integrates to zero with re-
spect to the stable age distribution in a supercritical Bellman-Harris
process with no extinction. We present sufficient conditions for the
asymptotic normality of the mean of f with respect to the empirical
age distribution at time ¢.

1. Introduction

Let {Z(t);t > 0} be a one-dimensional supercritical Bellman-Harris
process evolving from one particle of age 0 at time 0 with lifetime
distribution G and offspring law {p;}. For any family history w, let
{a;(t,w);j = 1,---,Z(t,w)} be the age-chart at time ¢ and for any
f; R* — R define

Z(tw)
Zi(t,w) = > fla;(t,w)) and my(t) = BE(Z4(t,w)).

J=1

Let o > 0 be the Malthusian parameter for m and G which is the unique
solution to the equation m [;° e~*dG(t) = 1, where m = Y 22 jp;. If
e~ f(t)(1 — G(t)) is directly Riemann integrable (in short, d.R.i) then
it is well-known (see Jagers (1975)) that

lim e™*my(t) = %/0 e” (1 - G(u)) f(u) du = m§,

t—oo
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where 8 =m [;° e **G(du) and also (see Athreya and Kaplan (1976))

that

m 22, m; on the set of nonextinction.

Z(t)
In this paper we develop limit theorems for this class of stochastic pro-
cesses {Z;(t);t > 0} when m$ = 0. In section 2 we describe the basic
setup, terminologies and notations and state the results. Section 3 an-
alyzes the first and second moments of Z;(t) while section 4 gives the
proof of Theorem 1.

In a sequel (Kang (1999)) we extend the results to multitype cases.

2. Statement of Results

For any family tree w let Z(¢,w) be the number of particles living
at time ¢, and let Z(¢,a,w) be the number of particles living at time ¢
whose age < a. We shall consider the following assumptions which are
not valid at all times.

(A1) po=0.

(A 2) my = ZJO.;O j2pj < 00.

(A3) G(0+)=0, G isnon-lattice.

(A4) [P uG(du) < oo.

The assumption (A 1) is primarily of convenience of exposition. Other-
wise, one has to keep qualifying “on the set of nonextinction”. With (A
1) and (A 2) (in fact, the condition Y 22, (jlog j)p; < co is enough) we
know (see Athreya and Ney (1972)) that there exists a random variable
W such that

tlim e®Z(t)=W as. and P(W >0)=1.
—00

The assumption (A 3) is standard and guarantees that Z(t) is finite
for any finite t. We add superscript a to random variables and their
moments to indicate the case when P is supported by those w’s which
start with one particle of age a > 0.

We impose the following assumptions on a measurable function f :
Rt — R.
(F1) f is continuous a.e. (w.r.t. Lebesgue measure) on the support

of G.

(F2) e@(1-G()f(t) isd.Ri and f0°° e (1 - G(t))f(t)dt = 0.
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(F3) e*fit)—0 as t— oo
(F4) e(m}*G)(t) is dR.i
(F 5) There exists sy > 0 such that for s > so,

sup |f(a+ s)(1 = G*(s))] < oo, sup | (a+s)(1 = G*(5))G*(s)] < o0,

where G*(t) = (G(t + a) — G(a))/(1 — G(a)).

REMARK 1. 1. (F 3) with (A 4) implies (F 3)’ : e~ f2(¢)(1-G(t))
is d.R.i.
2. (F 4) is not directly in terms of f and G and is difficult to verify
in general. However, (F 4) can be verified easily for Markov branching

processes (see Corollary 1 below) and when G is gamma (see Corollary
2 below).

Now we are ready to state the results.

THEOREM 1. Let m > 1. Assume (A 1) - (A 4). Let f satisfy (F 1)
- (F 5). Then

Z1(t —d—>N(O,Uf¢) as t— oo,
Z(t)

where (0 < 0'12, = nl_l tlim e——ath(t) < 00, Df(t) — E(Zf(t))z and
n = [ e (1 — G(u)) du/(m [;° ue**G(du)).

REMARK 2. In the next section, we'll show that tlim e *Dy(t) ex-

—00

ists and is finite and positive.

If the lifetime has exponential distribution, then the renewal function
can be found explicitly and we have the following

COROLLARY 1. Consider a Markov branching process with offspring
mean m > 1 and exponential life time with mean 1/b. Assume (A
1) and (A 2). Let f : R* — R be bounded and continuous a.e. If

e~ ™ f(t)dt = 0, then

Zs(t)
Z(t)

-4, N(0,0%) as t— oo,

where

o0 foe) + 2
0} = mb/ e ™ £2(t) dt+m263(m2—m)/ e (/ f(uw)e ™ du) dt.
0 0 0
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COROLLARY 2. Let {Z(t);t > 0} be a Bellman-Harris process with
gamma lifetime distribution with density function g(z) = I'(k)~1bFzF-le~b=
and offspring distribution {py}, where b > 0, k > 2 integer such that

1
cos(2m/k) < 5(1 + m'%).  Assume that (A 1) - (A 2) hold. Let

f : Rt — R be bounded, continuous and differentiable a.e. If f 5at-
isfies (F 2) and ||f'||w is finite, then

210 i>N(0,U?) as t— 00,
Z(t)

where a} is as in Theorem 1.

One can strengthen Theorem 1 to claim asymptotic independence of
Zs(t
W(t) = et Z(t) and —L () as in Athreya (1969). Thus we have

V&(t)
THEOREM 1. Under the assumptions and notations of Theorem 1,
Z4(t)

JZ (@)

COROLLARY 1’. Under the assumptions and notations of Theorem 1,

lim P(e=$Z;(t) < y) = /ooocb (L) dP(W < w).

t—oo ofw

lim P(e™*'Z(t) < z, <y)=PW <z)® (i) .
t—o0 Of

3. The First and Second Moments

Put p(t) =m fot e **G(du). By the definition of a, p,(-) is a proba-
bility distribution. Let U,(t) = > oo, u2"(t), where p* denote the n-fold
convolution of y, with itself and p2%(t) = 1 for ¢ > 0, be the associated
renewal function.

PROPOSITION 1. Let m > 1.
(a) Assume that e=* f(t)(1 — G(t)) is bounded on finite intervals. Then

et (t) = /0 e=ot=) (¢ — u)(1 — G(t — u))Un(du).
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(b) Assume e~ f2(t)(1—G(t)) and e~*/(m%*G)(t) are bounded on finite
intervals, then

eDy(t) = [le I —u)(1 - Gt - w)
+(mg — m)e”* @ (m? x G)(t — u)|Us(du).

Proof. (a) Recall that by the additive property of branching process
we have

£
(1) Zp(t) = I(o > )f(t) + > Zp(t = Xo)

j=1
where )¢ is the lifetime of the ancestor and ¢ is the number of off-
springs produced by it and {Z;(u);u > 0} are independent copies of
{Z(u);u > 0}. Since we assume the independence of £ and X, taking
expectation we get

t
mg(t) = f(t)(1 - G(t)) + m/o mys(t — u)G(du).
We multiply both sides by e to get the following renewal equation
¢
e=my(t) = e f(8)(1 - G(1)) + / e (¢ — w)pa(du).
0

Since e * f(t)(1 — G(t)) is bounded on finite intervals, we have (see
Asmussen (1987), p.113)

e "'my(t) = /0 e W f(t — u)(1 — G(t — u))Uy(du).

(b) Squaring both sides of (1) we have

Z3(t)=I(h > t)f(¢ +ZZ,, — N)Z;;(t — Xo) +ZZ,] — o).
i#j Jj=1

By the independence of £ and Ay we get
t
Dy®) = (L= GE)FAt)+ (ma—m) [ md(e—w)G(dw
0

+m /0 Dj(t — w)G(du).
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Muitiplying both sides by e~** we arrive at the following renewal equa-
tion,

e Dy(t) = e f)(1 - G(1)) + (my —m)e™(m] x G)(t)
(2) +/0 e~ Dt — u) po(du).
Since e~ f2(t)(1 — G(t)) and e“"t(m'j’, * (G)(t) are bounded on finite in-
tervals,

D) = [ (-0 - G- )

+(mg — m)e™ N (m? x G)(t — u))Us(du). -

The following is an immediate consequence of the Key Renewal The-
orem (see Asmussen (1987)).

PROPOSITION 2. Let f satisfy (F 3) and (F 4). Then Df =
lim e~ Dy(t) exists and is given by

Df = 5 [ (€= P ) - G + (ma = m)e (o + G)w)
which is finite where § = m Jo ue™ G(du).
Now define M(s) : f — M(s)f by (M(s)f)(t) = m(s).

PROPOSITION 3. Let m > 1. Then
(a) M (t) = my(t +9).
(b) Further, assume that (F 3) and (F 4) hold, then

lim e™*¢ hm e~ Dpy(s)s(t) = 0.

§—00
Proof (a) Let {aj;5=1,---,Z(t)} be the age-chart at time ¢.
muE);(t) = E(Zms(t))

Z(t)
= E (Z(M(s)f)(aj))

j=1

= E(Zf(t+3)) = mf(t+s).
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(b) From equation (2) above with M(s)f in the place of f

e " Dy(s)s(t)
= e {ME)NY O = G®)) + (ma = m)e™(miy); * G)(t)

¢
+ /0 e"’(t‘")DM(s)f(t — u) e (du).

First we show that e*{M(s)f}*(¢)(1 — G(t)) and e~*(m}, . * G)(t)
are d.R.i. for fixed s. Beginning with an ancestor of age ¢ at time 0, we
have the following identity

3
(3) Zi(s) = I(N > s) f(t+8) + Y Zri(s — XY

=1

where \* and £ are the lifetime and the number of children of the ancestor
with initial age ¢ respectively and {Z;;(s); s > 0} is the Z;(-) process
initiated by the jth child of the ancestor. Conditioned on X, {Z;;(s —
A5 =1,---,€} are i.i.d. and further if \' = u, then the conditional
distribution of Zy;(s — A*) is the same as Z;(s — u). So we have

@) (M = £+ 5)(1 =G (s) +m [ myls ~u)G'(dw)

and so,

5) 2
(MO <27+ (1= G o)+ 2m? | [ myts = )G

Using Cauchy-Schwarz inequality,

([ mf(S—u)Gt(du)>2 < ([ mie-wea) e

(m% * G)(t+ s)
- 1-G(t)

Combining this with inequality (5), we have

e (M(s)f)*(t)(1 - G(2))
< 2e* (e fA(t 4 5)(1 — G(t + ) + m2emotr) (m} x G)(t + 5)).
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(F 3) and (F 4) along with this inequality imply that e**{M(s)f}?(t)
(1 - G(t)) is d.R.i. for fixed s > 0. On the other hand,

. t
e_at/() mi,f(s)f(t —u)G(du) = e_atA mﬁ(t +5 —u)G(du)

A

t+s
e'“t/ mi(t + s — u)G(du)
0
— ease—a(t—i—s)(m% * G)(t + S).

So e“"’(mﬁl(s) s *G)(t) is d.R.i. by (F 4). Hence we can apply the Key
renewal Theorem to get

Jim €™ Daso (2)
= 3 [ MErw - ew)
B Jo
+(my — m)e™ ™ (m*M(s) f * G)(u)) du
[ e - o) + mimd < G)w)
+(mg — m)(m} x G)(u)) du
and since (F 3)' and (F 4) hold, we conclude that

26{18

B

IA

\ —as 13 —at —
slgge tlirge Dps£(t) = 0.

4. Proofs

Proof of Theorem 1.  Referring to the additive property of branching
processes we can write (suppressing w and (t,w))
Z(t)

(6) Zy(t+s) =D 27 (s),

where {Z(s);s > 0} is the process {Z;(s);s > 0} initiated by the
ancestor of age a; at time t. It is obvious that conditioned on the age
chart at time ¢, {Z{(s);j = 1, , Z(t)} are independently distributed.
Furthermore, if a; = a then the conditional distribution of Z;(s) is the
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same as Z}(s). Starting from equation (6) we have the following identity

2(t)

(7) Zi(t+3) =Y (Z7(s) = mF(5)) + Zmioys (8)-
=1
Dividing equation (7) by /Z(t + s) we get
Zf(t + S) _ Z 20

Z(Zaa aj S))+ ZM(S)f(t)

VZ(i+s) t+s ,/
Z(t)

W(t) 1 o) et . Zues()
W(t+s) \/—E(Z() F)eTs + Z(t+s)

sz(??) Ai(t,s) + As(t, s),  say,

where W(t) = e **Z(t). Here is the basic idea of the proof; we first
choose s large enough to make As(t,s) small in probability and then
with this large but fixed s, we show using the Lindberg-Feller theorem
that as t — 00, Ai(t,s) converges to the desired normal distribution.

We carry this out in a series of lemmas below where we assume that (F
1)-(F 5) hold.

LEMMA 1. For any n >0, § > 0, there exists so(n, ) such that
tlim P(JAs(t,s)| >mn) <6, forall s> sy(n,d).

Proof.  Recall that there exists W = tlim W(t) as. and P(W >

0) = 1if pp = 0. Choose z such that P(W < z) < §/3 and let ¢ > 0
be such that ¢ < z/2. Since W (t) converges to W a.s., it does so in
probability and hence we can choose sy = sj(§) such that

P((W(t+sp) ~W|>e)<d/3, forall t>0.
So for s > s; and for all ¢t > 0,
P(|As(t, )| >n) < P(|As(t,s)] >, [W(t+s)—W|<e,W > x)
+P(|W(t+s)—W|>e)+ PW <L z)
(8) < P(lAx(t, s)| > n, [W(t+ s) — W] <E,W>:IJ)+'2-?:—$.
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Now,
P(|As(t, s)| > n,|[W(t+s)-W|<e,W> z)
Zms)s(t)
9 < p(|ZMOLY | 5 Z(t+s) > (z —€)e”tH)
© < PUTEEDL > 2+ 0) > (o - e)e )

< P(1Zmes (O] > 1v/z =€ )

—a(t+s)
)E(ZM(s)f( M

<_..__._
- n¥z -

by Markov’ inequality. We can choose sy by Proposition 3(b) such that
52> 5 imply

(10) e”® lim E(ZYs);(t)e™ < (z —en’”.

03!0'1

Let s, = max(s), si), then from inequality (8), (9), and (10) we have for
all s> s, lim P(Ay(t,s) >n) <o O

LEMMA 2. Fix sq > 0 and let F; be the o-algebra contammg all the
informations up to time t. Then hm Var(Ai(t, so)|Fe) = af(so) a.s.,

where

a?(so) = e“m/o ZVaso (da),

Vi(a,s0) = f*(a+ So)Ga(SO)(l - G*(%0)),
Va(a,s0) = m(Dy*G*)(s0),

Va(a,50) = (ma—m)(m}*G®)(s0),

Va(a,s0) = —m?*(my* G*)*(s0),

Vi(a,50) = —2mf(a+ so)(1—G%s0))(ms * G*)(s0),
Alg) = Jo e (1 - G(u)) du

the stable age distribution.
fo e u(1 — G(u)) du

asg

Proof. Write Y;(so) = [Z7(s0) — m{ (s0)le” % , then

Z(t)

Ai(t, s0) = 1 Zyta]( 0)
VZ(t) 3
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Since {Y;%(s0);j = 1,---,Z(t)} are mutually independent conditioned
on F; and also mdependent of Z(t),
1 2(t)
Var(Ai(t, so)|F.) = va(y (50)|F2)-

Recall equations (3) and (4)

3
Zg(s0) = I\ > s0)f(a;+s0) + ¥ Zpa(so — A%),

i=1

m‘)‘j(so) = (1—-G%(sp))f(a;+ so) + m/oso mg(so — u)G%(du).

So E([Y;¥(s0)]|F) = e°% 3°0_ Vi(aj, s0) and

Z(t)

_asozZ ZV a],so)
= e %% Z/O Vi(a, s0)A(da, t),

where A(a,t) = ZZ(Z;;) = Z}t) z I(O q(a;) is the empirical age dis-

tribution at time t. Note that since sup my(s) and sup Dj(s) are
0<s<sp 0<s<sg

finite Va(-, 50), Va(-,s0) and Vj(-,sp) are bounded. The boundedness of
Vi(+, 50) and V5(-, s) is direct from (F 5). Also Vi(-,s0),=1,---,5 are
continuous a.e. on the support of G. So the proof is complete by the con-
vergence of the empirical age distribution to the stable age distribution
(see Athreya and Kaplan (1976)), i.e

Var(Al (t, So) '.7'})

Il

5 00
Var(Ailt,s0)lF) = ey / Vi(a, 50) A(da, t)
i=1 Y0
5 00
2 ey / Vi(a, 50)A(da) as t—o0. [
— Jo

LEMMA 3. For a fixed sy > 0 and n > 0

sup B(Y2(s0)|% Y2 (s0)] > net) — 0 as 1 — oo.
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Proof. First we see from equation (4) that
sup [mj(so)] < sup |(1—G*(so))f(a+s0)| +m sup my(s)l,
0<ast 0Sast

SS()

which is finite by (F 5) and that
E([Y*(s0)]% |¥(s0)] > mef?)
< 2B(e7**| Z§(s0) % 127 (s0) — m(s0)] > med¢+*0)
+2E(e”**|m§(s0)|%; |23 (s0) — m§(s0)| > nef ).
So it is enough to show that
(©)  sup P(Zj(s0)] > nef*9) 0 as ¢ oo,
0<La<t

(i)  sup E(1Z}(s0)[%|Z§(s0)| > nef™*) — 0 as ¢ — oo.
) 0<a<t
Note that

3
A1 D Zg(se =A%)
i=1

where f(sp) = Supg<,<,, | f(50) and 5 denote the stochastic order; X % Y
implies P(X > x) < P(Y > z) for all z. Combining the equation (3)
with the inequality (11) we get

% ZZ, so — A% f(s0) = Xf(so), say,

=1

(12) 1Z3(s0)] < 1f(a+ s)T(A® > s0) + XF(s0).
So
(13) Sup |Z%(s0) < Ft+ s0) + X f(s0)-

Now we observe from (12) that

sup P(|Z}(s0)| > nef“+*)) < P(sup |Z3(s0)] > nef“++)
Osast 0<a<t

< P(F(t+ s0) > (1/2)med ) + P(XF(s0) > (1/2)medE+)).

Since (F 3) implies that e=% f(t) — 0 as ¢ — oo the first term is zero
for large ¢, and since X is finite a.s., the second term goes to zero as
t — 00 so (1) is proved.

Turning to (4i) we note first from inequality (12) that

(14) 1Z8(s0)|? < fla+ s0)2I(A* > so) + X2F"(s0)-



Central limit theorems for Bellman-Harris processes 935

Note that Z%(so) = f(a + so) on {\* > s} and so,

sup E[fz(a + 85)I(\* > SO)I(lz?(SO)l > ne%(t+so))]

0<a<t

= sup fz(a-i- SO)E[[()\“ > So)I(If(a+ 30)' > ne%(Hso))]

0<a<t

= sup f2(a +s0)(1 — G“(so))I(lf(a + s0)| > 7’]6%(t+so)).

0<a<t
Since I(|f(t + sp)| > net®+)) = 0 for ¢ large enough
(15) tlim sup E[f?*(a + s0)I(X* > so)I(|Z}(50)] > net)] = 0.
—0(0<a<t

On the other hand, by (13) we have
sup E[X2?2(30)1(|Z<;(30)| > pedtren))

0<a<t

< TPsBIX{I(T(+ 50) > 2neb) + I(XF(so) > reS )},

Since e~ #¢+50) f(t +55) — 0 as t — oo and E(X?) < 0o we conclude that

(16) lim sup B{X*F(s0)1(1Z}(s0)| > net )] = 0

bﬂ000<

by the Lebesgue dominated convergence theorem. Now, (14) and (15),
along with (16) together prove (ii). 0

The following lemma concerns the conditional Lindeberg-Feller condi-
tion.

LEMMA 4. Fix sp > 0, n > 0, then

§E ({Y“f O [1(s)
Z@)

Z(t)
1 a a
Proof. Write S(so,n) = ZE (Y (s0)}2; |V (s0)| > n/Z(2) | Fo).
Given 8, > 0, §; > 0, there ex1st to > 0 and a set A such that

(17) () P(A)>1-4,
(18) (i) t>ty and w € A imply together Z(t,w) > de*.

>n|.7~}>£+0 as t— 00.
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So for any € > 0, from (17) we get

P(Sy(s0,m) > ) P(S(s0,m) > & A) + P(Sy(s0,m) > €; A°)
( (307 ) > 6’A) +61

and for ¢ > ¢y, we have the following from (18)

P(Si(s,m) > €; A)
Z(t)
< P(% > BUYZ ()} [ (s0)] > nv/et|Fy) > )
< P({sup E({Y;*(s0)}; [¥(s0)] > nv/85e%)} > €)

which is zero for ¢ large enough by Lemma 3. So we conclude that
tlim P(S,(s0,n) > €) < 8;. Letting 8; | 0 we get the result. O
—00

LEMMA 5. For fixed sy, A;(t, so) -4 N(0,0%(s0)) as t— oo.

Y7 (s0),
N

E(exp(i6A;(t, s0))|F?) ﬁE (eXp (~0Ytaj(s°)) |-7:)
€ 14 90 t = 1 A
=1 VZ(t)

Proof. Conditioned on F;, s are independent. Hence

It
.
~8
—_

V)
e

o)
~—

&
<

As in the proof of the usual Lindeberg-Feller central limit theorem (see
Durrett p. 98) it is possible to show that

Z(t)

2
(19) Hqg‘t’i(so, ) =5 exp (—%aﬁ(so)) as t— 00
j=1

with the aid of Lemma 2 and 4. Therefore, the dominated convergence
theorem completes the proof. That is, since (19) holds and since
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HZ(t)¢ (50, ) _exp(-—-go‘?( )) <2 we have

E(exp(i0Ai(t, s0)) =

—

E(E(exp(i0As(t, 50)))| 1))

E(E(exp(i0A;(t, s0))) — exp (—%aﬁ(so)ﬂ.’ﬁ))

6 ,
+eXp(—50f(So))
62 ,
exp(—;af(so)) as t— oo.

So A;(t, so) has the desired limit distribution. O
LEMMA 6. 0}(s) = 0f =n7'D} as s— oo

Proof. Let ¢; = fo
G(u)) du. Then

/ Vi(a, s)A(da)

~o%(1—-G(u)) du)~!, so that A(a) = ¢ fo“ e=ou(1—
= e /oo FP(a+ 5)G*(s)e™**(1 — G(a + s))da
0
< g /°° e—a(a+s)f2(a + s)(]_ — G(a + S))da
0

= q /oo e~ f*(a)(1 — G(a))da.

The last term goes to 0 as s — oo since e~*¢f2(a)(1 — G(a)) is integrable

((F 3)).

e % /000 Va(a, s)A(da)
— cyme /0 ” /0 " Dy(s — u)GH(du)e2(1 — G(a))da

00
=clm/
0
00
-—->c1m/
0

a+s
/ e @D (g + 5 — u)e **G(du)da

/ D3e**G(du)da

by Lebesgue dominated convergence theorem

o0 (3
= eymDf / / dae™**G(du)
o Jo

o0
=c1mD?/ ue™™G(du) = ni'Ds.

0
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e /ooo Vi(a, s)A(da)
= cle°°‘s/ (mg — m)(m} * G*)(s)e™**(1 — G(a))da
< ¢(my — m)/ e+ (m? x G)(a + s)da

= c(msy — m)/ m * G)(a)da
—0 as s—oo by (F4).

Since (my * G*)%(s) < (m3 x G*)(s), we have from above that
e f0°° Vi(a, s)A(da) — 0 as s — oco. Finally,

e /000 Vs(a, s)A(da) 2

2 /ow e+ f(a + 5)(1 - Gla+ ))(my + G*)(s)da

2
= 4m

< 4m?c /soo e **f%(a)(1 — G(a))da /oo e~*(m} x G)(a)da

— 0 as s— o

by the fact that e f2(a)(1 — G(a)) is integrable and by the assumption
(F 4). Hence

5 )
afe(s) = Ze"’s/ Vi(a,s)A(da) » n7'D} as s— oo. O
0

i=1

Now we complete the proof of Theorem 1 by assembling all the lemmas
together. Let &€ > 0 be arbitrary and y fixed. Choose 7. > 0 such that

& () -+ (%)

Since 3133.10 a?(s) = afc, there exists s;(¢) such that s > s;(¢) implies

(21) l<I> (y+7‘775) —@(y+m€)’ <% for r=+L
af 5(s) 3

<

£
3
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Let § = /3 and let s* = max{so(7c,9), s1(€)} where so(n;,d) is defined
in Lemma 1. Then

lim sup P(A;(¢, s*) + Aa(t,5") < y)

t—oo

(22) < limsup P(Ai(t,s*) <y +n.) + limsup P(|Ax(t, s")| > ne)
t—o0 t—o0
Y+ 3
@ _
(W@ﬂ)+3

lign inf P(A;(t, s*) + As(t,s*) <)
(23) > lign inf P(As(t;8") <y—n) — lign inf P(|As(t, s*)| > n¢)

Q(i&%)—g

and

. Z(t)e
(20), (21), (22) and (23) and the fact lim — oy 1 as.
imply together that
Zi(t+s*
@(i) _e<imp| 28X o, S@(—q—)+e.
oy t—o0 Z(t + S*) o'f
Since € > 0 is arbitrary, the proof is completed. O

Proof of Corollary 1. Clearly boundedness of f implies (F 3) and
(F 5). It remains to check that the condition (F 4) is satisfied. In
exponential case, the Malthusian parameter o can be found easily, i.e.,
a = b(m — 1). So we have p,(dt) = bme ™" dt, U,(dt) = bmdt. Hence

e *'ms(t) = /t et £t —u)(1 — G(t — u))bm du
0
= bm ’ —-au —bu d
/0 e f(u)e ™ du
= —bm/ e~ f(u) du

where the third equation comes from the assumption (F 2). Since f
is bounded [m(t)| < [|f|le*’e™™™ = ||f]le™™. So e *(m}x G)(t) =
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O(e™™) and it is d.R.i. Furthermore, 8 = m [[°te"*G(dt) = [

oF = lime ™ Dy(t)

t--00

= %/ooo(e_“tﬁ(t)e—bt + (mg — m)e™(m5 = G)(t)) dt

= mb ( / e~omt f2(t) dt
0
+(mg — m) /0 e mj(t) dt /0 e thet dt)

= mb ( /0 e ™ f2(t) dt
+mb?(my — m) /0 " ot ( /0 t e ™ f(u) du)2 dt) . O

Before proving Corollary 2 we provide some interesting results on con-
vergence rates in renewal theorems with gamma interarrival distribution.

LEMMA 7. Let G be a gamma distribution with density function
g(z) = T(k)~'b*z*le > and let U be the renewal function with in-

!
terarrival distribution G. If r is d.R.i., differentiable a.e., and if ||%l|oo

is finite, then

00
(rx U)(t) — % / r(w) du| = O(eot)
0
where || - || is the supremum norm and p = [° uG’(du) = k/b, and
1 = b(1 — cos 2T).

The following is an immediate result with r = Ijg ).
COROLLARY 3. With the notations in Lemma 7 for any h > 0,
h
Ut)-U(t—h) = " + O(e™™).
Proof of Lemma 7.  Let {Y,;}%, be i.id. with common distribution

G. Define a renewal process S = 0, S, = ZLIY}, n > 1. Let B,
denote the forward recurrence time, i.e., the waiting time until the next
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renewal after t. For an almost surely continuous function h : R — R,
define H(t) = E(h(B;)). Then we get the following renewal equation

(24) H(t) = (1 - G®))E(h(Y1)|Y1 > t) + (H * G)(t).
Now, let 7 be a function which is bounded on bounded sets and consider
the following renewal equation

(r+xU)(t) = r(t) + [(r = U) * G|(2).

If r(t) = (1 — G(t)) E(h(Y1)|Y1 > t), we conclude that H(t) = (r * U)(¢)
by the uniqueness of bounded solution to the renewal equation (24).
Furthermore, if r is d.R.i,,

0= [ " rw)du| = |B(h(BL) — E(h(Buw))|

(25) < |IhlleollP(Bt € ) — P(Bw € ),
where || - || denote the total variation norm. Now, for each n > 1, we
may write

Yo=Y+ -+ Yor,
where {Y,j;j = 1,-++ ,k}%, are iid. with P(Y;, > z) = e”*. Define
a Markov process X (t) on state space S = {0,1,--- ,k — 1} by
j j+1
X(t)y=3 if Sma +Z Yo:<t< Sm—1+ZYm,i, for some m > 1,
=1 i=1
where Z?:l Y;n; is defined by 0. Clearly, the process is irreducible and
so positive recurrent and for each ¢ > 0,
Pt — eAt

where {P*},5 is the transition semigroup of X(t); P*(3,5) = P(X(¢t) =
4|X(0) = i), and A is its intensity matrix, i.e.,

0 —bb - 0
A= . . . ‘. .
b 0 0 - —b

The eigenvalues of A are d; = b(exp{%i} — 1), j =1,--- , k. Hence, we
have

IP{() = m()l| = O(e™") as t— oo,
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where m = (my,---,7) is the stationary probability measure of X(¢)
and ¢, = —Red,. Since P(B, € - ZP(X = j)P(Ti_; € -) and
Z 7;P(Ty-; € - ), where T} is a gamma random variable

with para.meters (b, 1), we conclude that
(26) |P(B: € -) — P(Bx € -)|| = O(e™).

Now consider the equation
() = (1= GEBHIY > ) = [ hw)G(d).

/
Since 7/(t) = h(t)g(t) a.e. and ||%||oo is finite, so is ||h||. Combining
this fact with (25) and (26) the proof is completed. O

Proof of Corollary 2. First it is easy to see that o = b(m% -1)
and that u,(t) is a gamma distribution with density function g,(z) =

F(k:)‘lmbkzk‘le‘bm%‘”. Since f is bounded (F 3) and (F 5) are trivially
satisfied. So it is enough to show that e=*(m3xG)(t) is d.R.i. Let f,(t) =

01 = G0 Sinee T 0, and. o(0/aa® = e%/m.

|| ||00 < 00. So my(t) = e*(f, * Uy)(t) = O(el*"*) by Proposition

(a) and Lemma 7, where ¢; = m¥*b(1—cos 21). Hence e~*(m}*G)(t) =
O(e*~2t) which is d.R.i. if & —2¢; < 0, or equivalently if cos(2m/k) <
(1+m~V%)/2. O
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