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DEGREE OF ISOGENIES OF ELLIPTIC CURVES
WITH COMPLEX MULTIPLICATION

SoONHAK KWON

ABSTRACT. Let F be an elliptic curve over C with complex multi-
plication. Suppose that E is defined over F = Q(j(E)). We study
possible degrees of F~isogenies of E.

1. Introduction

Let E be an elliptic curve over C, the field of complex numbers, with
complex multiplication. Then the ring, End E, of endomorphism of F
is isomorphic to an order Oy = Z + fOg of a maximal order Ok of
an imaginary quadratic field K = EndE ® Q. Write K = Q(vD)
where D is a squarefree integer. The discriminant dx of K is 4D when
D = 2,3 mod 4 and is D when D = 1 mod 4. Let j(F) be the j-
invariant of E. Then the field K; = K(j(E)) is the ring class field of K
with conductor f. We may assume that E is defined over F' = Q(j5(E))
which is a minimal field of definition of F. We are mainly interested
in the classification of all possible degrees N of cyclic isogeny E' — E
where both E’ and the isogeny are defined over F. Furthermore, we will
classify all elliptic curves E’ defined over F which are F-isogenous to E.
Note that such E’ is necessarily a CM-curve. Classification of degrees
of cyclic isogenies of elliptic curves without the restriction of complex
multiplication for a given number field is a very interesting problem
and the case for Q is settled by Mazur [11] (See also [9]). There has
been some progress in the case of quadratic fields (See [11] [5] [12]). In
particular it is proved in [12] that for a given quadratic field & which is
not an imaginary field of class number one, there is an effective constant
C such that no elliptic curve over k has a k~isogeny of prime degree p
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when p is greater than C. Frey (5] also showed that for a given prime
p greater than 240, there is no elliptic curve having a rational isogeny
of degree p over almost all quadratic fields. But it seems to me that
there is no satisfadtory result available at this moment concerning the
degrees of isogenies of CM~curves over F. If we restrict our attention to
K j-isogenies, then it is well known that E has a cyclic isogeny of degree
p defined over Ky for infinitely many primes p. And those primes p are
well understood. However, it will turn out that there are only finitely
many integers N such that NV is a degree of cyclic isogeny E' — E where
both E’ and the isogeny are defined over F. 'In fact we will prove that
those N should be (roughly speaking) a divisor of f2dx.

Regarding torsion subgroups of CM—-curves, Parish [14] classified all
possible types of torsion subgroups over Ky and F. In particular he
showed that if P is a torsion point of order N in K, then N must be
1,2,3,4 or 6.

2. Ring class fields and isogenies over their subfields

From now on, we assume D # —1, -3 so that the group of units
of Ok is {#1}. Those exceptional cases, D = —1,—3, can be treated
in a similar manner by slightly adjusting some of the statements, i.e.
Proposition 2.1 and Theorem 4.1 should be modified appropriately for
each case. Let us review some of the basic fa¢ts of the class field theory.
We have an 1sombrphlsm between the ideal class group Cl(Oy) and
Gal(K;/K) via the Artin map. Letting (T) = Gal(K;/F), the galois
group of K; over:Q is a generalized dihedral group generated by o €
Gal(K;/K) and 7 with the relation o7 = 70™". The class number h
of Os is related to the class number of the maximal order by the well
known formula,

(21) WOy = roorI1 (1- (d;) ).

where p denotes a prime and (QK) is the Kronecker symbol. We also
have the followmg equality {17],

(2.2) a6 (j(a)) = j(aO; 11D),
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where a,b are proper (or invertible) ideals of Oy, Ok respectively and
op is an Artin symbol (I—(%/I—() in Gal(K;/K).

PROPOSITION 2.1. Suppose that Ky is a subfield of K;. Then f
divides 2f when f is an odd integer and 2 splits in K, and f' divides f
for all other cases. Conversely if f and f' satisfy the above conditions,
then Ky is a subfield of K.

Proof. The proof of converse statement is easily derived from the def-
inition of ring class fields. Now suppose that we have number fields H
and L such that L is a finite abelian extension of H. Then there is a
conductor f(L/H) which is (excluding infinite part) an integral ideal of
H and satisfies certain conditions in the class field theory. Suppose that
we have another finite abelian extension M of H such that L is also a
subfield of M. We claim that §(L/H) divides f(M/H). By the theorem
of Hasse on conductor and discriminant, we have the following [1],

f(L/H) = lem fy,

where x runs over all characters x : Gal(L/H) — C and f, is f(H,/H)
for which H, is the fixed field of ker x. Viewing Gal(L/H) as the
quotient group Gal(M/H)/Gal(M/L), x can be lifted to a character
X : Gal(M/H) — C such that

ker x/Gal(M/L) = ker ¥,

which shows that ker x and ker ¥ have the same fixed field. Thus we
have f, = f5 for all x and f(L/H) divides f(M/H), which finishes the
proof of the claim. Suppose we have inclusions K C Ky C K;. Since it
can be shown that f(K;/K) is Ok only when f = 2g where g is an odd
integer and 2 splits in K and the conductor is fOg for all other cases
[4, pp. 195-198], our proposition naturally follows from the claim. J

Let H be the upper half plane and I'y(IV), where N is a positive in-
teger, be the set of all matrices Ccl 3) in SLy(Z) withc=0 mod N.

‘Then the space Xo(N) = I'o(N)\H*, where H* = H U PY(Q), is a com-
pact Riemann surface which has a structure of algebraic curve defined
over Q. Every non-cuspidal point of X;(/V) cotresponds to a pair (E, C),
where E is an elliptic curve over C and C is a cyclic subgroup of E(C)
of order N. (E,C) and (E',C’) give the same point in Xy(N) if and
only if there is an isomorphism ¢ such that ¢E = E’ and ¢C = C'.
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By a suitable choice of basis, we may express the corresponding lattice
A of E as [w,w] and C as (wy/N) where wy/w; is in H. Sometimes
we use the notation ([wi,ws], (we2/N)) to denote the pair (E,C). If E
is a CM—curve, then by the theory of complex multiplication, (E,C) is
defined over K(j(E),j(E/C)) where K = EndE ® Q. Note that we
have an analytic 1somorph1sm C/A E by sending z to (P(z),P'(z)),

where
1
D
et (z— w) w

is the Weierstrass P-function corresponding to the lattice A. Now let
P1(z) be the Weierstrass P-function corresponding to the lattice [wi,
wy/N)]. Then we have the following formula due to Keiport [18],

N-1
Pi(z) =P(2) + 3 Pz + %)‘ -~ P(%).

Using the above formula and elementary properties of symmetric func-
tions, we get the following (See also {13]).

LEMMA 2.2. Let E be an elliptic curve defined over a number field
L. Let [w,ws) be the corresponding lattice for E and C = (P(wa/N),
P'(wa/N))) be a cyclic subgroup of order N. Then, 0C = C for all
in Gal(L/L) if and only if E/C and the isogeny E — E/C are defined
over L.

For a given lattice A in C, the corresponding elliptic curve E = C/A can
be written as

E:y’ =42’ — go(A)x — gs(A),

where,

g2(A) = 60 Z 70 93 (A) =140 Z
wer-0? wea-0 Y
Examining the q—expansmns of corresponding modular forms for g, and
g3, we get go(A) = go(A) and gg,(A) = g3(A), where A is the complex
conjugation of A. Thus we have ](A) = j(A) and since two lattices are
homothetic if and only if they have the same j-invariant, we find that
A = A if and only if go(A) and g3(A) are real numbers. The author
would like to thank D. Rohrlich for providing crucial hints for the proof
of the following proposition.
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PROPOSITION 2.3. Let O; be the order of conductor f in an imagi-
nary quadratic field K. Let a and b be proper integral ideals of Oy.

1. b — ba™! gives a Q(j(b))-isogeny between elliptic curves defined
over Q(j(b)) if and only if a = a.

2. Let f' be a positive integer which divides f. Then b — 6Oy gives
a Q(j(b))—isogeny between elliptic curves defined over Q(j(b)).

Proof. 1. First we prove that Oy — Oa™! is defined over Q(5(Oy))
when a = @. Without loss of generality, we may assume a is a primitive
ideal, i.e. a is not divisible by any integer greater than one. Then there
exist elliptic curves E and E’ defined over K(j(Oy)) such that £ =
C/\O¢, E' = C/A\Osa™! for some complex number A and an isogeny
¢ : E — E' defined over K (j(Oy)) which is cyclic and of degree {O;/al.
Now choose u such that E;lz = C/p)Oy is defined over Q(j(Oy)). By

the remark just before this proposition, we get uA = +uX. Write E’ as
y? = 4z —~gyz—gs. Then El—lz 1 y? = 4%~ 2 gox— 55 has real coefficients
m

because pX = £z and they are in K(j(Oy)) because 4 is in K (j(Oy)).
Since Q(j(Oy)) is the maximal real subfield of K(j(Oy)), we find that
E’ is also defined over Q(j(Oy)) and we have an isogeny ¢’ : E y = F s

between elliptic curves defined over Q(; (Of)), where ¢’ is mduced by the
twist of E. Now it is easy to check ¢/ = ¢’ which shows that the isogeny
is also defined over Q(j(Oy)). Conversely if Oy — Osa~! is defined
over Q(j(Oy)), then we have Oja~T = (O;a~!, which implies @ = a.
Now let us prove the general case. Again assume @ = a. Note that,
by the previous argument and by the Lemma 2.2, we have an elliptic _
curve defined over Q(5(Oy)) and a cyclic subgroup C of order |Oy/a|
such that C is invariant under galois action by Gal(Q(35(Oy))/Q(3(Oy)).
Thus we have an isogeny ¢ : F — E/C where everything is defined over
Q(7(O¢)). Up to a homothety of b, we may assume that b and f are
relatively prime. Then 6Ok = b, is an ideal of Ok such that O;Nb; = 6.

Now letting oy, be the Artin symbol (E%IS), by the formula (2.2) we
have

05;1(§(E)) = 04;2(3(Oy)) = j(Of N b1) = j(b),
and

o1 (J(E/C)) = 0y (j(@™")) = j(a™' Or N 61) = j(ba™").
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Now writing o = 0y, ¢7 : B7 — — (E/C)° gives an isogeny defined over
Q(j(b)) which corresponds to the lattice inclusion b — ba~!. Note that,
letting C' = ker ¢°, we have (E/C)° = E°/C'. Conversely, if we have
an isogeny b — ba~! defined over Q(j(b)), then by applying the formula
(2.2) again, we get an isogeny O; — Oa~! defined over Q(5(Oy)) and
therefore @ = a. i

2. Since Oy and Op are invariant under complex conjugation, using the
same idea, it is easy to show Oy — Oy is defined over Q(j(Oy)). Then
writing bOfl = b1 and bOK = bg, we get b= Of N bg and bl = Of' N bg.

Now we have ;
mb“(J(Of)) 3(Of N b2) = ji(b),
and
051 (5(0p)) = §(Op N b2) = j(bOy),
and the rest of the proof is similar to the first case. 0

3. Proper ideals of the order O;

Let a be a primitive proper ideal of Oy with index N. Then as a
Z-module, a can be written as [N,b 4+ fwg] for a suitable choice of
integer b, where wg' = di +2'

B+f\/'~

. Writing B = —(2b + fdg), we get

b+ fwg

1 1 '
Z(B - fsz) = Z{(% + fdg)? — fdk}
2
= b2+bfdg+ %(dﬁ( ~dg)
= (b+ fuk)(b+ foK),
which is divisible by N. Thus we have B2~4NC = f*d for some integer
C. Since b+1£w1< is a root of Na? + Bz + C = 0 and Enda = O,
we get (N,B,C) = 1. Now assume @ = a.. Then from the relation
b+ fwg +b+ fwg = 2b+ fdk, we find that N divides B. Therefore, if
a is a proper ideal of Oy with O¢/a cyclic of order N and @ = a, then
there exist integers N, B, C with (N, B,C) = 1 such that B> —4NC =
f?dx and N divides B. Conversely if there exist N, B, C satisfying the

~B+ f\/dg
2

above condition, then the module a = [N, | gives a primitive
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proper ideal of O; with index N and @ = a. Thus we only need to solve
the following equation,

B?—4NC = f%dx, N|B, (N,B,C)=1,

to find such proper ideals we want. Suppose we have an ideal a with Oy /a
cyclic of order N and invariant under complex conjugation. Let p be a
prime which divides N. Write N = p*N’ with n > 1 and (p,N') = 1.
Then there is a proper ideal b such that bla, |O;/b| = p" and b = b,
which implies that it is enough to solve the equation when N is a power
of p for every prime p.

PROPOSITION 3.1. Let O; = [1, fwk] be the order of conductor f of
an imaginary quadratic field K. Let p be a prime which divides fldg
and s be the highest power of p such that p° divides f’dx. Then all
primitive proper ideals a of O with index |Oy/a| a power of pand@=a
can be classified as follows.

1. When p # 2, there is a unique a for which
Vd %d
a = ps, f 5 K if f sK

p
[ . Pt f\/_dx] . fdx
p, 1
2 7

is even,

is odd.

2. When p = 2,
(a) if 16 divides f%d, there are two possible cases, |O¢/a| = 4 or
25=2_ There is a unique a with [O;/a| = 4, and

_ -4+ fVdk . frdk
a= |4, 5 if 6

_ fvidk . fPdk .
= [4, 5 ] if 6 is odd.

is even,

There are two different (non homothetic) ideals a with |Oy/a} =
25=2 and s > 4, which can be described as

a= [25__2 f\/@] [23_2 -26—2 + f\/@]
? 2 ? ? 2 -
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(b) if 16 does not divide f2d, the only possible case is
a= |2 f\/sz,

[2 -2+ f\/ﬂ]
H 2,

when D=2 (4) and f = odd,

when D =3 (4) and f = odd.

Proof. 1. When p # 2, 1etting N =p" and B = p"B; where n > 1,
we get ‘

2
p"B? - 4C = ! dK.
pn
fde . o . L :
If = is divisible by p, then p divides C' which is impossible. Thus

n=s where s is the ‘highest power of p such that p® divides f2dx. Now
[k

if is even, then B; = 2k for an integer £ and the corresponding
ideal is
[.N —B+f\/dK] _ [ps —2psk+f\/dx] _ [ps f\/dK]
? 2 - ) 2 - ? 2 .

2
it p‘f" is odd, then B, = 2k + 1 and the ideal is

[ , —P°(2k+1) +f\ﬁi}] _ [ps’ —ps‘+2f\/2i}] ‘

r, 5
2. The case when p = 2. Write N = 2" and B = 2"B;. Then we have
22nBl2 _ 2n+2C — deK'

When 16 divides f2dy, we easily conclude that n is either 2 or s — 2.
Suppose N = 4. Then we get a unique ideal a using the same technique
as in the first case. Now suppose N = 2°~2 and s > 4. Then we have

fldk
25

2B} - C =

2

Since is odd, any integer B; gives a solution of above equation.

When B, = 2k, the corresponding ideal is

g2 gy fﬁ;] - [ %)
? 2 -

5—2
1 2
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When B; = 2k + 1, we have

g2 “2(2k+1) + f\/@] _ [23_2 -2 4 NZE]
’ 2 ’ 2 '

Note that they are different elements in the ideal class group of Oy.

When 16 does not divide f2dg, it is easy to check that there exists an
ideal a in Oy with @ = a and Oy/a cyclic of order power of 2 only when
f is odd and 2 is ramified in K. It is an intersection of the prime ideal
of Ok lying above 2 with Oy. , O

4. Restriction to the degrees of isogenies

Let A be a lattice with complex multiplication. Then for any oriented
basis [wi,ws] for A, writing 7 = we/wy € H, T is a root of a quadratic
equation

Az? + Bz +C =0,
where A, B and C are integers with (A, B,C) = 1. Letting dx be the
discriminant of the quadratic field K = Q(7), we may write

B? — 4AC = fldg,

for some integer f > 1. Then EndA is equal to Of. Now suppose that
A is a cyclic sublattice of A’ with index N. Then for a suitable choice of
basis, we have A = [w;,ws] and A’ = [wy,wz/N]. Since 7/N is a root of
the following quadratic equation

N?Az* + NBz+C =0,

we find that End A’ = Op where f’ divides N f. In particular, if N =p
is a prime and does not divide f, then we have End A’ = Oy or Oy;.

THEOREM 4.1. Let E be an elliptic curve with complex multiplica-
tion such that End E = Of where Oy = Z + fOg and K = Q(VD).
Let F = Q(j(E)) and suppose that E is defined over F. Let Sy be the
set of all positive divisors of f and S} be the set of all integers which
are indexes of primitive proper ideals of O; invariant under complex
conjugation.

1. If f is even or 2 does not split in K, then there is an elliptic curve

E’ defined over F and a cyclic F-isogeny E' — E of degree N if
and only if N = ab where a is in Sy and b in S} .
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2. If f is odd and 2 splits in K, then there exists such E' if and only
if N is either ab or 2ab where a is in Sy and b in S .

Proof. 1. Let a be an integral ideal of Oy with (a, f) = 1 which
represents E up to homothety, Then E’ (up to isomorphism over F)
corresponds to a lattice L D a such that a — L is cyclic of index
N. Since Q(j(L)) is a subfield of F, we find, by Proposition 2.1, that
End L = Oy where f' divides f. Thus we have the following inclusions,

a-— aOfr - L,

where a — aQy is cyclic of index a = f/f’ and both aO¢ and L are
proper ideals of Op. Write L = aQ;b~! where b is a primitive ideal and
|0;/b] = N/a =b. Since a — aOy is defined over F' by Proposition 2.3
and a — L is also defined over F' from the assumption, a0y — L must
be defined over the same field. Again by Proposition 2.3, we have b = b.
Conversely, for a given: N = ab where a € Sy and b € S} ,, we have the
following inclusions

a — aOf/y — a0y/07,

where b is a primitive ideal of Oy, with index b and b = b. Though
each inclusion is cyclic, we need to prove that a — aQy,b™! is cyclic. If
not, the quotient group has a p torsion part which is not cyclic for some
prime p. Therefore we have a proper ideal J dividing b such that

J2 = Jj = mef/a,
where m > 1 and we-: have an integer n > 1 such that p" divides a
with (p,a/p") = 1. Since a — aQy/,J™! is not cyclic, a0y, J!/a is
annihilated by the multiplication ap™'. Thus

a> apm*lJ‘la(’)f/a = %Ja(’)f/a = %JC;/aa.
Since End a = Oy, we have %JOf/a C Oy and

a a a ;
7O © 2050 Or = 2O/

Thus we have JOy/, C Opf/,, Which is easily seen to be impossible in
view of the expression of J as a Z-module.

2. Let a ¢ L with index N and End L = Op. By Proposition 2.1, f’
divides 2f. If f’ is odd, then f’ divides f and the same argument with
previous case can be applied. Thus let us assume f' = 2f" and f” divides
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f. By the remark before the statement of this theorem, we find that f’
divides Nf. Since f is an odd integer, N must be even. Therefore we
have another lattice o’ such that a — @’ — L are inclusions and a — o
hag index 2. Again by the same remark, Enda’ is either Oy or Oyy. If
it is Oy, we have a proper ideal p of Oy such that a’ = ap~!. Therefore
the elliptic curve corresponding to the ideal a has a cyclic subgroup of
order 2 which is not defined over F because 2 splits in K, which gives a
contradiction. Thus we have End a’ = Oy and the following inclusions,

a—ad — dOym — L.

Since a’ — L can be dealt with in a similar way, we are done. Conversely,
assume N = 2ab where a € Sy and b € S} ,. Then for a given proper
ideal a of Oy, there is a unique lattice o’ such that a C o’ has index 2 and
Endd’ = Oy. (The other two lattices which contain a as a sublattice
of index 2 are ap~! and ap~' where p is a proper ideal of Oy such that
pp = 20;.) Thus we have the following inclusions,

a—d — a0y — d'Onpseb7",

where b = b and Oyy/,/b is cyclic of order b. Therefore we have a cyclic
isogeny of degree 2ab defined over F. 0

The above Theorem when combined with Proposition 3.1, gives a com-
plete description of those elliptic curves E’ which are F-isogenous to
E. It gives an explicit basis for the corresponding lattice of E' for every
such E'. An almost immediate corollary is the following.

COROLLARY 4.2. Let K, F,O; and E be as in the Theorem 4.1.

1. When f is even and dg = 0 (4) or when f =0 (4) and dg = 1 (4),
there exists a cyclic F-isogeny E' — E of degree N if and only if

%d
N divides f 4K. Furthermore for those N, there are exactly two

elliptic curves (up to j—invariants)y E' if N = 0 (4) and there is
only one E' if N # 0 (4).

9. When f =2 (4) and dx = 1 (4) or when f is odd and dg # 5 (8),
there exists such E' if and only if N = N' or 2N’ where N' is an
odd integer dividing f?dy. And there is a unique E' for such N.

3. When f is odd and dx = 5 (8), there exists such E' if and only if
N divides f2dg. Here, the exitence of E' is unique for such N.
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Proof. Tt is enough to consider p-power degrees only for each prime p.
If p is an odd prime then for every p" dividing f?dy, there are only one
f'" which divides f and one proper ideal b in Op with b = b such that
a — aOp — aOpb™! gives a cyclic isogeny of degree p”. The case when
P = 2 can be treated in a similar manner though in this case, Proposition
3.1 implies that there are exactly two isogenies if the degree 2 is greater
than 2. ]

Let us give some examples. We fix an imaginary quadratic field K =

Q(v/dxk) where dg = —35. We will consider those elliptic curves defined
over Q(5(Oy)) when fis 1,2 or 4. It is known [2] that the class number of
K is two and j(Ok) = —2'%-5v/5-¢!? where ¢ = 128 is the fundamental
unit of Q(v/5). Let i = j(ps) = 5(p7) = 25 - 5v/5 - €12 where p; (resp.
p7) is the prime ideal of K lying above 5 (resp. 7). Let E be an elliptic
curve defined over F' = Q(j(Ok)) with j(E) = j(Ok). Then there is
an elliptic curve E; defined over F with j(E;) = 4, such that F is F—
isogenous to E; with degree 5. E is F-isogenous to the dx—quadratic
twist of E; (resp. E) with cyclic kernel of order 7 (resp. 35).
Now let E' be an elliptic curve defined over F' = Q(j(0,)) with j(E') =
7(Os) such that E’ is F'-isogenous to E with degree 2. Since 2 is inert in
K(V/dk), we find that the class number h(O;) is 6 by the formula (2.1).
Since O; — Ok gives an isogeny of degree two, j(O;) and j(Ok) satisfy
the modular equation ®5(j(0O;), j(Ok)) = 0 where (See [2] or [17])

&y(X,Y) = XP+Y3— X2Y24+2¢.3.31(X%Y + XV?)
—21.31. 53(X2 4 Y?) + 3¢. 53. 4027XY
+28.37.55(X +Y) —212.3%. 5°.

Letting f(X) = ®o(X, j(Ok)), 7(Os) is a unique real root of the cubic
equation f(X) = 0, because the other sublattices of Og with index two
are [2,wg], [2,wx + 1] and none of them is homothetic to the complex
conjugation of itself. Let pf = [5,+/dk],p} = [7,v/dk]. Then we have
pipy = VdgO,. Let ji = j(pt) = j(p4). Note that j; is the only real
conjugate of j(O,) of the galois extension K, over K. There is an elliptic
curve E| defined over F’ with j(FE}) = j; such that E’ is F'-isogenous
to E{ with degree 5. E' is F'~isogenous to the dx—quadratic twist of E|
(resp. E') with cyclic kernel of order 7 (resp. 35). All other F'-isogenies
E' — Ej are factored as E' — FE — FE; where E — E, are defined over
F. ‘
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Let E” be an elliptic curve defined over F” = Q(j(O,)) with j(E") =
§(O,) such that E" is F"-isogenous to E’ with degree 2. Note that j(E")
is a root of the cubic equation g(X) = 0 where g(X) = ®2(X, j(0z)). In
this case, g has three real roots and the other two roots are j(Ox) and
§(p!) where p} = [4,2y/d] is a primitive ideal of Oy with index 4. Let
p! = [5,2v/dk] and p? = [7,2v/dk]. An easy computation shows that
plpipl = 24/dx O, and from which we deduce that the ideal class group of
O, is isomorphic to Z/2Z & Z/6Z. There are elliptic curves EY, .
defined over F" with j—invariants j(p?), j(p7),j(p}) respectively such
that E" is F"~isogenous to Ey (resp. EY, E§) with cyclic kernel of order
5 (resp. 7,4). E" is F"-isogenous to the 4dx—quadratic twist of Ey (resp.
EY, EY, E") with cyclic kernel of order 28 (resp. 20,35, 140). All other
F"-isogenies E" — E, are factored as E" — E' — E, where E' — Ey
are defined over F'. Note that E” has two cyclic F"-isogenies of degree
4, and the corresponding curves are E3 and E.
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