Y19

A A AA FAAG A A AF

o

o t

4 2 0

2 of
Bopgelais A ek A WANE WHeE, ohdd A WS Aksigth A dFY qaes st IEE
Was) e, 2 wAls 2 A Aelel a lsd wAAE BATE e, 4 JANe £9d EE5E
LAsks] ol gas AA i g ARtk deteh BE whyel S48 A4 ¢ 87 o fRdEe Y
WAL et 71 relm A WAl ug T R 5 glth dojuh eleid Hut Hel Aoz s
3 | < s ojut o elA], AU welnole] bdA 7% 221 Booch?] AAl el o &
7 Avka Agach WA, 4A dRE s 9IAT 4R4 deRg odd dEaEE Agen w
g5 olebAl AAE 3ol ATTE olgatel, Ml wAlel ¥Pule) = BES HEY

A Design Verification Method for Object-oriented
Design Specification

Eun-Mi Kim'

ABSTRACT

In this paper, we present a first step for developing a method of verifving both safety and correctness

of

ohject-oriented design specification. At first, we analyze the discrepancies, which can occur between requirements

specification and design specification, to make clear target faults. Then, we propose a new design verification method

which aims af detecting faults in the design specification. The key idea of the proposed framework is that all elements

1o be verified can be extracted based en the requirements specification, safety standards, and design specification given

for the target product. These

clements are expressed using three kinds of tables for verfication, and thus, the

verification steps can be greatly simplified. Here, we assume that component library, standards for safety and design

specification ohtained from the Booch's object-oriented design method are given. At the beginning, the designers

construct a design table based on a design specification. and the verifiers construct a correctness table and a safety

table from component librarv and standards for safety.

‘then, hy comparing the items on three tables, the verifiers

verification a given design specification and detect faults in it. Finally, using an cxample of object-orjented design speci-

fication. we show that faults concering safety or correctness can be detected by the new design verification methed.

1. Introduction

Object-oriented soltware development is attractive

% B od-pr g }Lﬂbhﬂ pnanti
tas %1-. sedtieh 7
mrEs (g 98 14

&F
H
=

Ir

[}
21,

=

1

yil
&
XA

At

) Aol olef ARG
’«T}‘!’Il» z!’L

D1 28 269

to software engineers because ifs use increases
productivity throughout the software life cycle[5].
There exist several object-oriented design methods
[1210,11]. Seme of the typical object-oriented design
methods are due to Booch and Rumbaugh. Espe-

claily, Booch miethod s o fwosd methodoiogy that
addresses most aspects of the object-oriented ana-
lvsis and design technology.

On the other hand as software is used in the
safety critical systems, such as aircrafts. an atomie
power plant and so on, the safety has become the
most important guality characteristic. Since the re-
guirements for safety are not explicitly described in
requirements specification, it is very difficult to
assure the safety in the technical reviews and tes
ting. Generally, two types of analvsis - dynamic and
static - can be used for verification of safety[6] In
dynamic analvsis, the code or model of the code is
executed and its performance is evaluated. In static
analysis, the code and model are examined without
being executed. In some ways, static analysis is
more complete than dynamic analysis, since general
conclustons can be drawn[813].

Formal verification and Software Fault Tree
Analysis{(SFTA) are used as static analvsis[38]
Formal verification essentially provides a proof of a
consistency between two formal specifications of a
system. But there are both practical and theoretical
lmits and the few formal verifications applied
real programs have required massive effort even for
relatively small softwarel4,.8]. In addition, even pub-
lished proofs of small algorithms have been found to
be flawed. In the previous researches|3.8], Fault Tree
Analysis(called FTAL that is often used to verify
the safetv of hardware system, has been applied to
software, This new analysis method is called SFTA.
SFTA traces that behavior into the logic of the code
and deterrmmes whether a path exists through the
code that could cause the hazardous output. Ho
wever, these methods use the reachability graph to
analyze statically whether the behavior graph can
hold safety assertions, and the reachability graph
brngs about problems for state explosion.

Moreover for some crivcal safety-related systems,
correetness proofs are a valuable aid In increasing
confidence in the system|[12). Unsafe states may be

correct if the specification is flawed by including

PR JRSERRt

240 Fhiaun it H#A4 ds 2E 1o

pohin dial happens o be unsafe or does net
specify anything about a particular hazardous beha-
vior8]. Formal proofs of correctness attempt (o prove
that the program meets its specification. Technical
reviewsidesign review, code review and so on) and
testing are well- known methads for assuring correc
tness[9). But, the correctness of software in an early
phase cannot he completely verified by reviews and
testing. Thus, it 1s necessary to otherwise verify both
safety and correctness of software in the early phase
of the software life cycle.

In this paper, we aim to develop a new method
to verify bhoth safetv and correctness of object
oriented design specification simultaneously(Concer—
ning the outline, we have already presented it in
{5, At first, this paper proposcs a new design
verification method 1o detect faults contained in the
design specification by using three kinds of infor-
mation tables. Here, we¢ assume that component
library, standards for safety and design specification
obtained from the Booch’'s object-oriented design
method are given, and that designers and verifiers
participate to build information tables from the speci-
fications., Based on these tables, the verifiers review
a given design specification and detect faults in it
Finally, hy applying the proposed framework to a
small example of software design specification, we
show that faults concerning safety or correctness

can be detected in the new design verification.

2. Preliminaries

2.1 Object-oriented design method by Booch

There exist scveral object-oriented design methods
{1,210,11]. Some of the typical object-oriented design
methods are due to Booch and Rumbaugh. From
now on, we will use the term "Booch method” and
"OMT(Ohject Modeling Technigue)” to refer to the
ohject-oriented design methods proposed by Booch
and Rumbangh, respectively. Especially, Booch me-
thod is a broad methodology that addresses most

aspects of the object-oriented analysis and design

technology, Also. Booch and Rumbaugh aim o pro-
duce a single. unficd method that bring together
Booch method and OMT. In addition, it Incorporates
the lessons learned from real projects as well as
from other methodologies. In [11. Booch method
adopis a number of elements from OMT such as
associations and roles. Simularlv, OMT also adopts
some elements from Booch method such as cate
gories and object message diagrams. Therefore, if
the proposed method can verify the design spec
fication designed by Booch method, we consider the
proposed method can be also applied to other met
hods easily.

[n this paper, we aim to verify the object-orien-
ted design specification which results from the Booch
method. The Booch method uses the six kinds of
diagrams{Class diagram, Object diagram., Module
diagram, Process diagram, State transition diagram
and Interaction diagram) to describe the strategic
and tactical analvsis and design decisions that must

be made when creating an object-oriented svstem[1].

2.2 Definition of Comectness and Safety

According to IEEE standard, correctness is de-
fined as the degree to which software, documen-
tation, or other items meet specified requirements
{14]. Thus, in order to verify the correciness, we
check whether design specification meets reguire
ments specification. On the other hands, safety is
defined as the degree of freedom from risk in any
environment[8]. In order to verify the safety, we
check whether design specification has some risk or
not. Assume that software is produced correctly
according to the requirements specification. So, if the
requirements specification was flawed and incom-
plete, then the software might be not safe[8]. There-
fore, it is necessary to verify safety as well as

correctness of software.

2.3 Classification of Faults
Here, we classify the discrepancies, which can

occur between requirements and design specifica-

tons, into ecight tvpes of faults to make clear targel
faults. <Table 1> shows the results of the classi-
fication. We consider that requirements specification
includes two ifems | descriptions about functions and
safety of software. In Table 1, {0 in column "Func-
tion” means a function of software is described
correctly. Similarly, X m column "Safety” mesans a
function of software doesn’t violate safety, and © in
column “Design specification” means the design
specification is produced correctly according to the
requirements specification. For example, if the
descriptions of the function and the safety in the
requirements specification are correet and the
description of the implementation in the design
specification is incorrect, then 1t belongs to the tvpe
B fault. Also, in casc that the description of a
function in the requirement specification is correct, if
the description of the safety and the implementation
in the design specification are incorrect, then it
belongs to the tvpe D fault. Here, type A fault
influences neither correctness nor safety of software,
therefore we don't discuss tvpe A. On the other
hand, type E fault is due to the incorrect description
of the requirements specification. However in this
case, the design specification meets the correspon-
ding requirements specification. According to the
defimgtion for correciness, we can say that the
design specification is correctly implemented. Thus,
type E fault also influences neither correctness nor
safety of the software, therefore we do not discuss

type E fault.

{Table 1> Classification of faults

Requirement specification Design fault
Function Safety specification | type
. 9] A
@ C/‘ 3 B
~ O C
C x =
X D
p .
% O " F
=
X ® 2 G
X H

kG REE A BMIA) LET S A A5 2 1505
TOOR (Waiting)/ SENSOR Ok)/ -
1)(}();1'@'?)1:‘}%:/\ SENSOR-OEE g e DOUREOPENY
[TRE ‘wI“]’
/ DOORZOPEN{)
Lt ¥ OX{Amive
A BOXtAmve) SOX(Arrive)/
EFNSOR-ON UHBIRESETO CERESET
JrDy- el U B
msomm;,; DOOROPEN() REOPENG
SENSOREG .
UEB(Cancel/ DOOR:CLOSE) S5
SENSORIOFFD) BOY:DOWN{
DOOR(Waating)VDOOR-CLOSE(D
Sg |
T DHB(Cancel)y \,hf\,bOR Ng)f
SENSOR:OFF() SENSOS
DEOR: (,ms;r()
4O LPl) BOX(Arrivey/ ﬁi(‘RESE‘l”)
OHB Push) i DHB:RESETO B S—
CERSORLONG DOOR-OPENG ‘ -
SENSOR(OK
\ S3 | “SENSOR:OFF()]
DOOR(Waiting), HBRE: 106 Pushy

POORZCLOSED DOOR:OPEND

(Fig. 1}

Our proposed method consists of two phases
correctness verification and safety verification,

Types 53, D), F and H faults can be detected in
correctness verification phase and/or safety venfi-
Next,

cation phase. types € and (¢ faults can be

detected only in safetv verification phase.

3. Proposed Method

In this section, we propose a new design verifi-
cation method to verify both safety and correctness
simultaneously of object-oriented design specifica—

tiens,

3.1 Assumptions
In our proposed method, we reguire the following
four assumptions :
{1) The object-oriented design specification to be
verified is oblained by the Booch method{l]).
The Booch method uses the six kinds of dia-
gramsiclass diagram, object diagram, module

diagram, process diagram, state transition dia-

DOOR:CLOSE)
BOX:DOWN()

Design specification of elevator control program

the

strategic and tactical analvsis and design deci-

gram and interaction diagram) to describe
sions that must be made when creating an object
~oriented svstem(l]. In this paper, we deal with
the faults related onlv to the action and the
state transitions in the state transition diagram
(i].

Component library is prepared. In the library,
many kinds of componerst diagrams exist. Each
component diagram corresponds to the object
diagram in the Booch method, and includes the
following information : (1} ngme of the compo-

nent. (2} a set of internal states, (3 a set of
operatioms {there are two types of operations,
event and action) and (4) behavior of the com-
ponent described using a state transition diagram.
Standards{8]

learned from previous accidents, are prepared.

for safety, which reflect lessons

Requirements specification is described using na-
tural language and mcludes the functional re
which describe the

quirements fundamental

behavior of the software.

Tyt Tat b il

3.2 Design specification

In this Section. we explain the state transition
diagram{1] which 1s considered as the design spect-
Feation n this paper. The state transition diagram is
used to show : (1) state space of a given class, (2
cvents that cause a transition from one state to
another, and (3) actions that result from a state
change. If an cvent can occcur at a certain state,
then the corresponding actions are executed and the
state iz changed into the destination of the
transition.

Figure 1 shows an example of a state transition
diagram. For example, if the event "UHB(Push)”
occurs at the state "sy”, then the action "SENSOR:
ONO" is cxecuted and the state Is changed into "s;”.
Many kinds of technigues have heen proposed to
verify the safety of software designed by state
transition diagrams[3 8],

Most of them have used the reachability analvsis
to verfy it. However, the reachability analysis
causes state explosion during construction of the
reachability graph. In this paper, to resolve this
problem, we consider only events and actions in
verifving the correctness and safety. In other words,
we do not take the state of the system into account
explicitly. From now on, we will use the term
"design specification” to refer to the state transition
diagram.

Here, we assume that for any event e of a
transition 7 in the state transition diagram, its
associated actions are determined by the event e
and an event e’ of any previous transition z' which

has occurred just before the transition c.

@@
O

(Fig. 2 Restriction on transition

Consider two transitions ¢ from sz to sy and ¢

from s’ to 57, as shown in Figure 2 (a) and (b),

such that 7y and o2 have the same cvent ¢
Assume that the previous two transitions i from
s; to 2 oand ra from §° to s have the same
cvent e Then the new assumption requires that
two transitions 7 and ry must have the samc
action. This resiriction may be too strict n large
scale sofiware. But, in small scale software such as
a control program of an electrical pot or microwave
ovenl3,6], the action strongly depends on the event
regardless of what state it was onginally in. So, we
don’t think this restricton is very strict for a small

scale software design.

33 Cverview

Figure 3 shows the overview of the proposed
method, In the proposed method, designers construct
a design verification table. The design verification
table includes information related to correctness and
safety of the design specification. On the other hand,
verifiers construct a correciness verification table
and a safety verification table. The correctness veri-
fication table includes conditions to be proved for
assuring the correctness, and the safety verification
table includes conditions to be proved for assuring
the safety. Finally, by using these tables, verifiers
review the design specifications to detect the faults

which affect the comrectness or the safety.

34 Verffication tables

Next, we describe three kinds of verification
tables(CVT, SVT and DVT), used in the proposed
method.

(1) Correctness Verification Table(CVT} : Relation-
ships between events and actions, which are
extracted from the requirements specification, are
described. These give conditions to be proved for
assuring the correctness of the deign specifica-
tion.

(2) Safety Verificadon Table(SVT) ' Relationshipsb
among the states of objects, which are extracted

from the standards for safety, the experience and

wowledge of venliers, are described. Inooothor
word, SVT includes safetv conditions about
inderaction among objects. These give conditions
to be proved for assuring the salety of the
design specification.

(3¥ Design Verification Table{DVT} © Relationships
between events and actions, which are extracted

from the design specification, are described.

Requirement | Component Design
specification | library specification

Correctness Safety Design
verification table verification table verification table

Result Result
{correctness) {safety)

(Fig. 3) Outline of the proposed method

3.5 Verification procedure

The verification procedure consists of the follo-
wing steps :
Step 1. Construction of CVT and SVT

{1-1) Construction of CVT

(1-1-13 Extract all objects from the require-
ments specification. Then, take out
all component diagrams which cor-
respond to the extracted ohjects
from the component Hbrary,

{(1-1-2) Extract all events and actions from
the component diagrams and put
them into the two dimensional array
CVT.

{1-1-3) For each event e in CVT, put a
on each of event o that must have

occurred just before the cwrent

Sl AEE S S TS ST G5 2 a0

cvent ¢ based on the rewwrements
specification and component diag-
rams extracted in (1-1-2).

1 1 4) For each event in CVT, put a © . on
cach of actiens that can occur for
the event.

(1-2) Construction of 3VT

t1-2-1) Extract all objects from the require-

ments specification.

(1-2-2

falt

For cach object, extract all states
from the component diagram and
put them into the two dimensional
array SV,

(1-2-3) For each state s of an object in a
column of SVT, put an X on each
of states t of ohjects in a row of
SVT such that both state s and
state ¢ cannot occur simultaneously
based on the standards for safety
and the cxperience and knowledge
of the verifiers.

Step 2. Construction of DVT
{2-1) Extract all actions and cvents from the
design specification, and put them into the

wo dimensional arrav DV

(2 2) For each event e in DVT, put a { on each
of events p that have occurred just before
the current event e based on the design
specification.

(2-3} For each event in DVT, put a7 on each
of actions that occur for the event.

Step 3. Verification of correctness and safety

(3-1) Verification of correctness :

Check whether the design specification

meets the requirements specification. That

is, check if the DVT includes all ()'s in
the CVT at the same positions as in the

CVT.

(3 2) Verification of safety :

Check whether the design specification has

some risk. That is, determine whether the

DVT violates restrictions in the SVT.

3.6 Comparison with respect to conventional methods

Here, we compare the proposed method with con
ventional review methods and the safety veriflica
rion method proposed by Fukava et al,

(1} Comparison with conventional design review
methods © The conventional design review mainly
aims to prove the correctness of the design speci-
fication obtained by the structured design method.
For detecting design faults effectively, some kind of
check-hst is usually used in the design review. But,
in order to extend applicabilities, the items in the
check list are generally described abstractly. So, for
checking faults which depend on the target design
specification, a check-list is neither sufficient nor
useful. Morcover, since conditions for safety are not
explicitly described in the requirements specification.
it is very difficult to prove the safety conditions.

On the other hand, the correctness and safety
tables in the proposed method are substituted for
check-lists, and the information in these tables is
much mere dependable. Moreover, since conditions
for safety are extracted from the knowledge of veri-
fiers and standards for safety, which reflect lessons
learmed from similar projects, we can expect that the
proposed method makes the design review more
effective and efficient than conventional methods.

{(2) Comparison with safety verification by Fukaya
et all3]: Fukaya et al. have proposed a method to
verify the safety of the design specification. In order
to avoid software design faults, they derive safety
assertions using Fault Tree Analysis, compute a
reachability graph of the specification, and analyze
statically whether this graph satisfies safety asser-
tions. They assume that the requirements specifica-
tion is correct. However, since the majority of safety
problems arise from software requirements errors(8],
their assumption is strict. That is, though the sofi-
ware correctly implements the reguirements, the re-
quirements sometimes specify behavior that i1s not
safe from a system perspectivel8].

In the proposed method, we don't assume that

the requirements specification is correct. If the de-

sipn specification includes the faults against safet)
due tv the incorrect requirements specification, we

can detect them in the safety verification step.

4. Case Study

In this section, we apply the proposed method to
the design specification which includes two faults.
We consider the development of the control program
for a two story elevator systeml[7]. Assume that the
requirements specification shown in Figure 4 and the
design specification shown in Figure I are given.

First, objects are extracted from the given require-
ments specification. Here, the objects BOX, DOOR,
BUTTON, and SENSOR are exiracted. Then take
out all component diagrams which correspond to the
extracted objects from the component library. Figure
5 shows the component diagrams which correspond
to the components DOOR and BOX respectively.

4.1 Application of Step 1 and Step 2

At Step 1, verifiers construct the CVT and SVT,
shown in Tables 2 and 3, based on the component
diagram shown in Figure 5, and the descriptions
about the system behavior in the requirements
specification(Step (1-13). For example, consider the
statement “If the sensor detects that the elevator is
on the first floor, then the sensor is turned off, the
hutton is turmed off, and the door of the elevator
opens” in the requirements specification. Judging from
the previous statement in the reguirements speci
fication and in reviewing the component diagrams, in
order to confirm whether the box is on the floor or
not, the hox shouid be called by pushing the button.
Since the button is pushed on the first floor, the
button means Up-Hall-Button. Therefore, (O's are
placed at the intersection of the current event
{SENSOR, Ok} and the previous event {UHB, Push),
and at the intersections of the current event
(SENSCR, Ok) and actions [UHB, RESET], [DOOR,
OPEN], and [SENSOR, OFF], as shown in Table 2.
This means that if two events (UHB, Push) and

inENSOR, Ok: ooceur successively, then the actions
[UHB, RESET], [DOOR., OPEN] and [SENSOR,
OFF] are performed.

Next, the unusual situations among the compo-
nents are analyzed by referring to the component
diagrams. As a result, the SVT shown in Table 3 is
constructed(Step (1-2)). For example, from the know-
ledge and experience of the venfiers and the
standard about safety, an X is placed at the
intersection of state ‘down’ of BOX in the column
and state 'open’ of DOOR in the row. This implies
that 'down’ of BOX and ‘open’ of DOOR are not

permitted simultaneously.

Design of the program that controls an elevator in a
2 story building.

There are a button for requesting the elevator on
each of the two floors, and a sensor for detecting if
the elevator is on the floor. When the buiton is
pushed on the first floor, the button is turned on
and the sensor is activated. The sensor checks if the
elevator is already on the first floor(If the button on
the first floor is pushed again, then the reqguest for
the elevator is canceled and the sensor is turned
off.) If_the sensor detects that the elevator is on the
first floor, then the sensor is turned off. the button
is turned off, and the door of the elevator opens.(x)
If the sensor detects that the elevator 1s not on the
first floor, then the elevator moves to the first floor
automatically. Once the elevator arrives at the first
floor, the sensor is turned off, the button is turned
off, and the door opens......

When the button is pushed on the second floor, the
button is tumed on and the sensor is activated....
Once the elevator arrives at the second floor, the
sensor is tumed off, the button is turmed off, and
the door opens. The door closes automatically. when
a fixed amount of time elapges. If the clevator is on
the second floor and the DOWN button is pushed,
then the door opens and the elevator moves fo the
first floor.y) Once the elevator arrives at the first
floor, the DOWN button is turned off and the door
opens. The door closes automatically when a fixed

amount of time elapses,

(Fig. 4) Requirements specification for
elevator control system

e
e

AL AE S A FAGO S g e

Component DOOR
state { open, close }
method { AIOPEN, A'CLOSE, E:Waiting |
state transition {
Waiting

Component BOX

state { stop, up, down |}

method { A:UP, A\ DOWN, E:Arrive
state transition {

(Fig. 5) Component diagrams

Based on the destgn specification in Figure 1.
designers construct the DVT shown in Table
(Step 2). For cxample, consider the transition from
the state sy to the state sy in Figure 1. That is, if
event DXGB (Push} occurs at state sy, then the actions
DOORZOPENO and BOX:DOWN(are executed and
the state is changed into s« In this case, there are
two possible previous events. One is the BOX(Arrive)
from state ss to state s;, and the other is SENSGR
tOk) from state s to state s, Therefore, © ¥'s are
placed at the intersection of the current event (DGB.
Push) and the previous event (SENSOR, Ok), and at
the intersections of the current event (DGB, Push)
and the actions [BOX, DOWN)] and [DOOR, OPEN].
Similarly, {¥s are placed at the intersection of the
current event (DGB, Push) and the previous event
(BOX, Armive), and at the intersections of the
current event (DGB, Push) and the actions [BOX,
DOWN] and [DOOR, OPEN].

vx?y% 2 :,: ISHERE :s";‘it:_‘t;‘k
{Table 2> Correctness Verification Table(CVT) for elevator control system
Previous event Action
(UAS, [(CHB. | (DHB, | iDHB, | [tSENSOR. [iSENSOR,| (BOX, | [UHB, | [(DHS, IBOX. | IBOX, |[DOOW. | [[SENSOR,
Push) |Cancel)| Pashy | Cancel) k) Ng) Arrive) | RESET? | RESET] U | DOWN] | OPEN] OFF]
1L HB Push) 3
(1 HB.Cancel?
(DHB.Push)
r
1} (DHB.Cancel) i
el {LUGBPush) L |
{DGB.Pushi = L
= O O
(DOOR, Waiting | L
e T
{SENSOR.Ok} g) O G
(SENSOR Ng) & o
. z o o
L (BOX Arrive) 2
42 Application of Step 3 two faults in this example are explained in detail as
1The requirements specification in Figure 4 follows :

includes two faults. In the requirements specification,

(x) represents a statement where the functions are

described correctly, and (v) represents a statement

where the functions are described incorrectly. But,

neither (x) nor (v) say anything about safety. The

(1) Correctness fault {underlined by (x)) : Consider a
transition from state "s/” to state "s/” in Figure 1
such that the event and actions on the transition are

defined as

"SENSOR(Ok)/SENSOR::0FF(),

DHB:

RESET(), DOOR:OPEN()". However, the require-

{Table 3> Safety Verification Table(SVT) for elevator control system

Obiject(row}

UHB

DHB

UGB

DGB

BOX

DOOR

SENSOR

on

off on

off

stop

down

open | close

on

off

UHB

DHB |

b

}

uGs | L
<

DGB | &

C

o]
BB

BOX | u

m

n
DOOR
SENSOR

nents specibeaton shown in Pgure 4 osavs I the
sensor detects that the elevator 1s on the first floor,
then the sensor is tumed off, the button is turned
off, and the door of the elevator opens”. From the
requirernents specification, we can see that the but-
ton is pushed before the elevator box is on the first
floor. Since the button is pushed on the first floor,
the button means Up-Hall-Button, Thus. the action
DHBURESET(} on the transition from s; to s» is a
correctness fault, that is, an incorrect implementation
for the statement (%) in Figure 4, and belongs to
the type D fanlt.

(2} Safety fault(underlined by (v)) : Consider a tran-
sition from state "s;” to state "ss” in Figure 1 such
that the event and action on the transition are DGB
(Push)/DOOR:ZOPEN?), BOX:DOWN{(). Clearly, this
is a correct implementation for the statement (v) in
Figure 4. However, when an clevator is moving, its
door must be closed. If the box moves continuously
even if the door is opening, then it can cause trou

ble, and it may cause damage o the user. This is a
safety fault, and belongs to the tvpe G fault.

At Step(3-1), according to the CVT shown in
Table 2, for the current event (SENSOR, Ok} with
the previous cvent (UHB, Push)l. the intersection of
(SENSOR, Ok} and [UHB, RESET] is marked with
a . However, in the DVT shown in Table 4, for
the current event (SENSOR, Ok) with the previous
event (UHB, Push}), the intersection of (SENSOR,
Ok) and [UHB, RESET] is not marked with a
Thus, the correctness fault is detected.

Next, at Step (3-2), according to the SVT shown
m Table 3, the intersection of the 'down’' state of
0X in the column and the ‘open’ state of DOOR
in the row is marked with an X. This means that
while BOX is in the "down’ state, DOOR can not
change to the “open’ state. However, in the DVT
shown in Table 4, the intersections of (DGB, Push)
and {BOX, DOWN], (DGB, Push) and [DOOR,
OPEN] are marked with s. This implies that
‘down” of BOX and 'open’ of DOOR are permitted
simultaneouslv. Thus, the safetv fault is detected,

HEDNE 24 SAaAMU hE EJA 85 2 104

5. Limitations of the proposed method

In the CVT and DVT shown in Tables 2 and 4,
there are current events whose previous events arc
the same, but the actions are different. In this case,
if the design specification is implemented by ex
changing the actions to be performed, then the
proposed method cannot detect the fault. For example,
consider the statement “If the sensor detects that the
elevator 1s not on the first floor, then the sensor is
turned off, the button is turned off, and the door of
the elevator opens”’ in the requirements specifi-
cation. Then in the CVT, {)'s are placed at the
intersection of the current event (BOX, Arrive) and
the previous event (SENSOR, Ng), and at the
intersection of the current event (BOX, Arrive) and
the actions [UHB, RESET] and {DOOR, OPEN].

On the other hand, consider the other statement
“If the sensor detects that the elevator is not on the
second floor, then the sensor is turned off, the
hutton is tumed off and the door of the elevator
opens” in the requirements specification. Then in the
CVT, "'s are placed at the intersection of the
current event (BOX, Arrivel and the previous event
(SENSOR, Ngl, and af the intersections of the
current event (BOX, Arrive) and the actions [DHB,
RESET] and [DOCR, OPENL

For example, consider the case in which the
design specification in Figure 1 is implemented
incorrectly such that the actions on the two tran-
sitions from s to s and from s to s are
exchanged. Then, in the DVT, ()'s are placed at
the intersection of the current cvent (BOX, Arrive)
and the previous event {(SENSOR, Ng). and at the
intersections of the current event (BOX, Arrive) and
the actions [UHB, RESET] and [DOOR. OPENI]
Also, U's arc placed at the intersection of the
current event (BOX, Arrive} and the previous event
(SENSOR, Ng), and at the intersections of the
current event (BOX, Arrive) and the actions [DHB,
RESET] and [DOOR, OPENL As a result, all of the

. i's for this case in CVT are included at the same

T AT P

(Table 4% Design Verification Table(DVT) for elevator control system

Previous event Action
(UHB, | (UHB, | DHB. | OHB, | [SENSOR | sENsSOR, | GO | s, | (DHB. | [IBOX, | BOX. HIDOOR | [SENSOR.
Pushe | Canceld | Pushd | Caneel Ok) Arrive) | RESET] {RESET] LP] [DXOWN] | OPEN] OFF|
amg, ety o4
(WHBCaeed | o+ Vv v F vy .
. (DHB.Push)

(DHB.Canesl

{LGB.Push!

(DGB Pusly)

& | (DOOR, Wating:

ix)

(SENSOR.Ok)

(SENSORNg)

(BOX Arrivel

position in the DVT. Thus, the fault is not detected
using the proposed method. Howeﬁ’er, verifiers can
identify the cases or the parts of the CVT and DVT
in which both the current event and the previous
cvents on different transitions are the same. There-
fore verifiers can be instructed to examine the parts
in detait and detect the faults.

6. Conclusion

In this paper, we classify the discrepancies, which
can occur between reguirements specification and
design specification. into eight tvpes of faults and
make clear target faults. Then, we propose a new
design verification method to detect faults that are
contained in the design specification using three
kinds of information tables{CV'T, SVT and DVT).

In this paper, CVT and DVT don't include the
state dependencies. Because, in small scale software
such as a control program of an electrical pot or

microwave oven[3], the state is strongly depend on

the event regardless of what state it was originally
in. Currently, as the future research work, we are
extending the proposed method to relax this assump-
tion. We are also planning to extend the proposed
method to deal with six diagrams (state transition
diagram, class diagram, object diagram, interaction
diagram, module diagram, and process diagram) by
using the information of each diagram and evaluate
the proposed method using practical software deve-
lopment projects.

Reference

[1] G. Booch, "Object Oriented Analysis and Design
with Applications,” The Benjamin/Curmmings,
1994

2] P. Coad and E. Yourdon, "Object Oriented
Analysis, 2nd ed.,” Yourdon Press, 1991

{3} T. Fukaya, M. Hirayama and Y. Mihara, "Soft-
ware specification verification using ITA,” Pro-
ceedings of the 24th FTCS, pp.131-133, 1954,

D= derhurt, D Crmgen and L Ralston FONIY
rience with formal methods in critical systems,”
IEEE Softw. 11, 1, pp.21 28, 1954,

5 J. Jelicoate, K. Hales and V. Downes, “Obicet
Oriented System © the Commercial Benefits,”
Ovum Ltd, 1989,

6] E. M. Kim, S. Kusumoto and T. Kikuno, "An
approach to safety and correctness verification
of software design specification,” Proceedings of
the 6th ISSRE, pp.78-83, 1995,

(7} E. M. Kim, S. Kusumoto and T, Kikuno, "A
new verification framework of object-oriented
design specification for small scale software,”
IEICE Transactions on Information and Systems,
ERG-D. 1, pp. 5156, 1997,

(8] N. G. Leveson, “Safeware : Svsten Safety and
Computers,” Addisorn Wesley, 1995,

[9] G. J. Myers, “The Art of Software Testing,”
Wilev-Interscience, 1979,

[10] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy
and W. Lorensen, "Object Oriented Modeling and
Design,” Prentice Hall, 1991,

{111 S. Schlaer and S. Mellor, "Object Oriented Svs-

5 VIS A R i ad A0 N Ad M 4l witles AETd
BAD NS EJ0 MGl LE 8H4 g8 W 1851

term Anadvsiy,” Prenuce Hadl, 198,

2] L Sommervill, 'Software engineering.’ Addison
Wesley, 1992,

31 L. G, Williams, “Assessment of safety-critical
specifications,” TEEE Softw. 11, 1, pp.51-60, 1994,

[14] "[EEE Standard Glossary of Software Engine
ening Terminology,” IEEE, ANSIIEEE Std 610,12
-1990, 1990.

4 = 0

ekim@sunny howon.ac.kr

e-mail

19914 29 "Soista #4E
shop(o] gHAl

1993 R AR gy skl A
AbE Al ko) EF A AL

197 38 A F A AR
&3P F gkl

1997 39 ~8¥ Fd2A-EAATF LA Post- Doc.

1979 98~ AW AEadofeln 44

SIRAZA

nEgel HE W 4%

