MA 2 & | o|Ejuo] 29 A7|u}A 3} 37 o] A]
Aol Fast Javs HE
S
2 o

AAA G doleHo]x xxde] 8o ot A7lvtdsle WK ylolth £7]vkg FANME ol 79)
A3} oj5o) ols) AR A7 doledolxe) FA6) EAsA Bk ¥ =FS AANF ool A2ue] 276}
g FA40lA 7 vANN BAE J282E WHdd RS A2 ¢ Q' @ A e Ade HEHE 2710
W7 A4 ¥9st ol XQshzdl Hag wEe vhagch Fad 7t wHAAN AoHA) & A did daeA
PFeio) gt £49 rHstE APsy] A8 BT wpael Ao tish AW/ FrE B Bl £49 9
vl diel YTHAFRE FATLEN AHEA P Aagle) B3AAE FolHA 49 ovHtE A 4@

Accessibility to Instances Regardless of Versions in Schema
Evolution Environments in Object-Oriented Databases

Min Jin'

ABSTRACT

The facility of schema evolution is necessary in object-oriented database applications. There exist several versions of
schema and instances created under different versions of the schema concurrently in the database. This paper proposes
a mechanism for supporting accessing instances regardless of versions of the schema in schema evolution environments
in object oriented databases. There is trade-off between the flexibility of schema modification operations and the system
overhead for supporting such schema modifications. Access handling routines are provided to the undefined attributes in
each version of the class. Access handling routines are also defined for each pair of semantics rather than defining
backdate/update functions for each pair of versions of a class. Thus, this mechanism supports the change of semantics
with reduced user and system overhead.

1. Introduction

There have been tremendous changes in com-
puting technology including major changes in data-
base systems over the past two decades. As data-

FA5 4 RN L JRFATEF AT
A 119989 94 289, AAIEE 11999 1€ 20Y

base technology continues to develop, new database
applications have appeared in various areas. Rela-
tional database systems have been developed ex-
tensively and widely distributed in organizations
using computing [11,29]. However, conventional rela—
tional database systems have been demonstrated to
be inadequate for emerging database application areas

564 St FEX SIS =X M6 M3=(39.3)

such as computer-aided design, manufacturing, soft—
ware engineering, and office automation [8,12,13,17,
19,20,21,25]. Conventional relational data models have
serious drawbacks in representing and manipulating
complex and composite data structures since each
attribute in relational data models should have a
built-in atomic value.

Object-oriented data models appear to be attrac-
tive in design and manufacturing environments deal-
ing with large and complex composite products. Core
object-oriented technologies are characterized by four
important concepts ; objects, encapsulation, inheri-
tance, and polymorphism [5,6,9,28].

Objects are basic entities that have data struc-
tures and operations on these structures. Every
object has a unique identifier. Classes and/or types
describe the structure and behavior of a collection of
similar objects. Class descriptions are also used to
create individual instance objects. Instance objects
within a collection have the same structure and
operational behavior.

Objects encapsulate data and operations through
classes. Users can not see the inside of objects.
Data structures within the objects can be accessed
only through public windows that consist of pre—
defined operational functions called “methods”. Ob-
jects communicate through messages. Methods are
defined in a class and can be invoked by the corre-
sponding messages.

Classes can be related through the inheritance
feature in IS-A hierarchy within which all of the
properties including data and operations of a class
are inherited by its subclasses unless they are
redefined in the subclasses. IS-A hierarchy supports
generalization and specialization relationships.

Polymorphism is closely related to inheritance
and encapsulation. The same message to instance
objects of different classes may invoke specific
operational behavior of the object. It depends on
the method which is specially defined in the cor-
responding class.

Although there is no general agreement on the

features of object-oriented database systems, many
applications such as CAD, CASE, and office auto-
mation systems need schema evolution facility in
which databases are required to store different
alternatives of schema and multiple versions of the
same objects. In single schema evolution, only one
version of the schema exists, in which instances
should be updated or filtered to the new schema
whenever the schema is changed. There are a few
drawbacks to the single schema modification [19].
First, it doesn’t keep the history of modifications on
the classes. Second, any other users are not allowed
to access database while a user modifies the schema
and all other users have to use the modified
schema. Third, alternative schema can not be repre-
sented in the common database. Manufacturing
environments need alternative schema and con-
current processing by several teams. The scheme of
multiple versions of the schema can remove the
drawbacks of single schema modification scheme.
Just as the versions of the instance objects, the
schema is versioned. There is more than one ver-
sion of the schema active in the database. Histories,
revisions, and alternatives of the schema can be
represented with multiple versions of the schema.
Previous schema versions should be kept with the
corresponding instances that were created under the
version of schema.

This paper summarizes the issues concerning
schema evolution and presents an approach to
solving accessing to instances regardless of versions
in schema evolution in object-oriented databases.
The remainder. of this paper is organized as follows.
In section 2, the issues concerning schema evolution
are discussed. The methods for supporting schema
evolution are also briefly summarized here. In
section 3, related and previous work is summarized.
In section 4, access handling routines are introduced
to handle access to instances regardless of versions
and the mechanism for supporting semantic changes
is also discussed. In section 5, the conclusion is
offered.

HAXIE COIEHIOIAS AF(0INS SHEMM HEU FTst IAHA H

2. Issues in Schema Evolution

There have been three approaches to schema
evolution ; versions of classes, versions of schema,
and view of schemall24]. In versions of classes
approach, any modification of a class creates a new
version of the class and of its subclasses. This
approach gives rise to a problem. Users have to
choose a particular version for each class defined in
the schema in order to represent the state of the
schema at a given moment. In views of schema
approach, any number of views can be derived on
the schema. In versions of schema approach, any
changes to the schema leads to derivation of a new
version of the complete schema. Objects are asso-
ciated with the corresponding schema version. A
schema version corresponds to the complete state of
the database at a given moment of time.

There are some issues to be addressed in the

process of developing schema evolution schemel[30].

2.1 Schema Consistency

Schema consistency should be maintained in the
process of schema modification. For example, when
an attribute is dropped from a class definition, the
methods that access the attribute should be changed
or dropped to accommodate the change. A class in-
heritance hierarchy should not be allowed to be
cyclic. There are two kinds of consistency ; struc—
tural consistency and behavioral consistency[1].
Structural consistency refers to the static part of the
database. Informally, the schema is structurally
consistent if the class structure is a directed acyclic
graph(DAG) and if attribute name and method name
definitions, attribute and method scope rules, and
attribute domains and method signatures are com-
patible. Behavioral consistency refers to the dynamic
part of the database. Informally, an object-oriented
database is behaviorally consistent if each method
respects its signature and if its code does not result
in run-time error and unexpected results. Schema
consistency can be checked by placing consistency

r

555

checker between users and the system. It can work
automatically or via user intervention. Invariants and
rules have been suggested for the process of
schema changes to keep the integrity of schemal3,
18,22].

2.2 Version Consistency

Each class object might have several versions of
itself. In the scheme of schema evolution based on
the versions of the whole schema itself, a version of
the class that is consistent with each other is
contained in a schema version, thereby solving the
version consistency problem. In the scheme of
schema evolution based on versions of classes,
several versions of classes can be derived. In
object-oriented database systems, some classes are
related to others unlike relational database systems
in which relations are independent of each other.
The consistency among these versions should be
controlled in order to keep the integrity of schema.
It is necessary to determine which versions of
different classes are consistent with each other. This
task is called the configuration management. A
configuration is a collection of versions of the

classes in the database that are mutually consistent.

2.3 Object Consistency and Accessibility to Instances

An object is consistent if the values of the
attributes are consistent with the class to which
they belong. In addition to this, there is another
problem to be solved that originates due to object
inheritance among versions of schema. Objects that
are created under a schema version are usually
inherited by the descendent schema versions. The
definitions of classes can be changed during the
derivation of new schema versions. If the definition
of a class is the same between a schema version
and its descendent versions, the objects that were
created under the ancestor schema version are
obviously accessible to the descendent schema ver—
sions. They can be modified in the descendent

schema versions, however, they can not be physi-

556 ct=dEAeIEs =2Xl M6H HM3=(39.3)

cally updated in the descendent versions because the
ancestor schema version might lose the original
values for the objects. Even if the definition of a
class is changed during the derivation of a schema
version, the objects that were created under the
ancestor schema version need to be accessible to the
descendent schema versions. This issue is explained
with the notion of backward compatibility. A schema
change is backward compatible if any query made
on the changed schema can access data that were
created under the schema before the change. The
objects that are created under descendent schema
versions also need to be accessible to the ancestor
version. This can be explained with the notion of
forward compatibility. A schema change is forward
compatible if any query made on the schema before
the change can access the data that are created
under the schema after the change. Schema
modification without versioning can achieve sort of
backward compatibility by converting existing in—
stance objects to new schema, however, it can not
address the problem of forward compatibility. This
issue is closely related to the issues of this paper
and the details will be discussed in the later section.

2.4 Shareability

During the derivation of versions of schema,
usually a small part of the schema is changed so
that most part of the ancestor version of the schema
remains unchanged in the new version. These un-
changed parts of the schema can be shared among
versions. The delta technique has been used in
versioning files, in which the different parts between
successive versions are maintained and the un-
changed part is shared by the successive versions.
The unchanged part that is common to successive
versions can be selectively inherited by the descen-

dent versions.

3. Related Work

There have been several approaches to solving

the accessibility to instance objects among versions
[7,10,18,22,23,24,26,27]. Skarra and Zdonik [26,27]
proposed a type evolution scheme in a prototype
object-oriented database system, ENCORE. In this
scheme, types can be versioned. All versions of a
type definition are called a version set of the type.
The version set interface is defined for representing
the most general interface to a type. This is
constructed as a collection of all distinct properties,
operations, and constraints of all versions of the
type. When a new version of a type is created, new
attributes that were not defined in the existing
versions are added to the version set interface of
the type. The version set interface is a single
interface to all versions of the type. A handler is
defined for every attribute in each version of the
type in which the attribute is not defined, but it is
defined in the version set interface. Handlers are
used to help access instances that were created
under different versions by a program expecting
instances of its version. Since each instance is not
allowed to have additional storage for undefined
attributes, evolution operations are limited. Semantic
change and name change can not be accommodated
in this scheme. The mismatches between the
instances and accessing programs are handled by
the run-time system.

Monk and Sommerville [23,24] proposed a model
for versioning class definitions. This model has been
implemented in a prototype object environment called
CLOSQL [23]. Forward and backward compatibility
issues are addressed. Forward compatibility de-
scribes the ability of a program that was written for
accessing instances of previous versions to access
instances of new versions. Backward compatibility
describes the ability of a program that is written
using new versions of a class to access instances of
previous versions of the class. This model for
schema evolution is driven by the principle that it is
insufficient to change the structure of the classes
without considering the underlying semantics of the

data. Semantic information is considered in the form

ZBAIRIE HIOIEHOAL 270G 2B HE F&et IAHA FF 557

of special functions that convert instances of a
version of a class to those of another version of the
class. Update and backdate functions are provided
on the attributes of the previous and current version
respectively to help access instances that are created
under other versions. When a new version of a
class is derived by adding an attribute or changing
semantics of an attribute, the backdate function is
defined for that class version to access instances
that were created under the previous versions. At
the same time, the update function is defined for the
current version to access instances that will be
created under the new version. The query processor
will convert all instances of the class to the format
of the version of the class in the query. It is
necessary to apply corresponding update or backdate
methods consecutively along the path unless these
methods are provided between every pair of ver-
sions. Thus, name change and semantic change are
supported in this model. This model has some
drawbacks. First, users are required to write their
own update/backdate functions. Second, update/
backdate methods should be provided between each
pair of versions in order to avoid consecutive
application of update/backdate methods between suc—
cessive versions.

Kim and Chou [18] proposed a model for schema
evolution based on versions of schema. This model
is based on versions of objects that was imple-
mented on ORION. They developed a model of ver-
sions of schema by extending the version capa-
bilities and version derivation hierarchies of versions
of objects to versions of schema, whereas the whole
schema rather than each class is versioned in this
model. The access scope of a schema version SV-i
is defined as a set of objects that are accessible to
SV-i. This set includes the objects that are created
under SV-i and those that are inherited from the
ancestor schema versions. The set of objects that
are created under a schema version SV-i is called a
direct access scope of the schema version. They
introduced several rules dealing with the access

scope issue such as whether the access scope
should be inherited by the descendent schema ver-
sions and whether the access scope can be up-
datable in the descendent versions.

AVANCE [7] is an object management system
that aims primarily at the applications in the field of
office information systems. It uses version control
on bdth the system and application levels. On the
application level, there are object versions and object
type versions. They use exception handling similar
to the method used in [2627] to cope with type
version mismatches between the type version of the
object expected by the query and’ the type version
of the object accessed. Mismatch exception handlers
are provided to service such queries. The handler
may convert the instances to conform with the
version expected by the invoker or may simply
emulate old specifications, or both.

Clamen [10] proposed a schema evolution scheme
that allows existing databases to be adjusted to
different formats over time. It supports schema
evolution and instance adaptation. It allows multiple
representations of instances to persist simultaneously
and provides programmers with the specification of
how to adapt existing instances. When a version of
a class 1s created, a new version of every instance
of the class is created. These instance versions are
called facets. The storage for the attributes that are
used commonly in several facets can be shared
among them. In deriving a new version, the
attributes can be divided into several groups such as
shared, independent, derived, and dependent attri-
butes, depending on their relationships between
versions. Users specify the adaptation strategy ac-
cording to the classification.

OTGen [22] is a tool that is designed to support
schema changes and database reorganization. It
generates a transformer that applies the mappings
between the old and new schema to update the data.
The transformer consists of programs and tables
that transform the existing data into the new

schema.

558 St EMeStE ==X MeH AM3%=(99.3)

4. Access Handling Routines

As discussed in the previous section, the acces-
sibility to instances among versions has been one of
the important issues in schema evolution. The notion
of compatibility was introduced to explain accessi-
bility [23,24]. There are two kinds of compatibility
concerning the accessibility ; forward compatibility
and backward compatibility.

Queries
User-interface
query information
instance information
>
Access handler Schema

default values
access handling routine

(Fig. 1) Access Handler

Forward compatibility implies that the programs that
were written to access instances of old versions of
a class could still access the instances that are
created under new versions of the class. This leads
to the program usability. Forward compatibility
guarantees that the program that was written
assuming the old version of the class can be used
to access instances of new versions of the class.
Backward compatibility implies that the programs
that are written assuming the new version of a
class could still access the instances that were
created under the previous versions of the class.
Several schemes have been proposed to cope with
the problem of the accessibility to the instances
among versions in schema evolution [10,18,23,27],
which were discussed in the previous section.

The scheme, as seen in Figure 1, for coping with
the accessibility problem is similar to that of
exception handlers that was proposed in [26,27].
However, the scopes differ from each other. The

objective of their work [26,27] was to make changes
of a class transparent with respect to programs that
use the class. Programs can access instances that
are created under other versions of a class. This is
achieved by using a version control mechanism and
a set of exception handlers associated with the
versions of a class. Exception handlers are added to
versions of a class in order to do the behavior not
defined in these versions but defined in other
versions of the class. The handlers in these versions
are carried out when programs expect them to do
the undefined behavior. Thus, the handlers provide
programs with class change transparency. Class
change transparency leads to program usability. The
scope of this work is different. It focuses on the
accessibility to instances regardless of versions. The
instances of a class might be accessed as a whole
regardless of versions under which they are created
at any moment of the process of schema evolution.
The instances of a certain version of the class also
might be accessed. It is necessary to access some
or all of the product instances regardless of versions
under which they were created. Instances can be
accessed from any version without difficulty via the
attributes that are commonly defined in all versions
with the same semantics.

There are two cases in which accessibility
problem arises. Name change is not considered since
it is not allowed here. The first case is when the
instances are accessed through the undefined
attributes ; the invoking program assumes a version
in which the attribute is defined, but the instances
to be accessed don't have the attribute. The other
case is when the instances are accessed through the
attributes with different semantics ; the attribute is
defined in the version that the invoking program
assumes and it is also defined in the version under
which the instances were created, however, the
semantics of the attribute in both versions are
different.

An access handling routine is provided for the

version with an undefined attribute. In Figure 2,

Autobody-V1

Autobody-V2

HAXE HOHMOIA] AFIOIESH SE0M HE0 Fatet A FHE 853

Autobody-V3

length © integer
weight : real
color : colors

length : integer
weight real
color : colors
door : integer

length : integer(cm)
weight © real

color : colors
door : integer

Class Attribute | Set of versions Semantics

Autobody length {3} cm

(Fig. 2) Versions and Instances

Class Attribute | Version | Access handling routine

Autobody Door 1

door : = 4;

(Fig. 3) Access Handling Routine

when the attribute "door” is added to Autobody-VZ2,
an access handling routine is provided for the
undefined attribute "door” in Autobody-V1 as shown
in Figure 3. This access handling routine usually
gets predefined default-value. It is also necessary to
allow semantic changes in the description of attri-
butes. For example, “inch” in representing length can
be changed to "cm”. In this case, the domain of the
attribute such as integer is not changed, but the
semantics of the attribute is changed. In [27], where
exception handlers are used for accessing instances
across the versions, semantic changes are not
allowed. In [2324], backdate/update methods are
used for accessing instances among versions and
semantic changes are allowed and supported. How-
ever, backdate/update functions on each attribute
should be provided for every pair of versions unless
the backdate/update functions are consecutively
applied along the version derivation hierarchy.
Access handling routines are provided for every pair
of semantics, not for every pair of versions. In
Figure 2, the semantic of the attribute “length” in
Autobody-V3 is changed to “cm” from "inch” that is
valid in Autobody-V1 and Autobody-V2. Changes of
the semantics of attributes are represented as shown

in Figure 4.

(Fig. 4) Representation of Changes of Semantics

The semantics of the attribute "length” in V1 and
V2 should be represented once changes to the
semantics of the attribute occur as shown in Figure
5 although there is originally no explicit declaration
on the semantics of the attribute. Thus, the se-
mantics of "length” is represented in both V1 and
V2 as "cm”. An access handling routine is provided
for each pair of semantics as shown in Figure 6.
Hence, the number of functions to be provided can
be reduced to a small number compared to that in
the backdate/update function approach. A corre-
sponding routine is provided for a tuple (class, attri-
bute, instance-semantics, accessing-semantics).

Class Attribute Default semantics

Autobody length inch

(Fig. 5) Representation of Default Semantics

. From .
Attri- . To semantics .
Class bute semantics (accessing) Routine
(instances)
Autobody | length inch cm Z%ant?er;;th
Autobody | length cm inch leglegr;%ﬂ} :2:54

(Fig. 6) Access Handling Routines for Semantic Changes

The algorithm for accessing instances is described

in Figure 7.

procedure AccessAlllnstances(AQuery, Results) ;
/* This procudure receives a query and returns the result. */
begin
if the query is against a set of versions,
then /* The query is against a group of versions. */
begin
for each version of the set do
AccessAVersion(AQuery, Results);
end;
else /* The query is against a specific version. */
AccessAVersion(AQuery, Results);
endif
end.

560 StEEXNeISD| =EX M6H M3=(99.3)

procedure AccessAVersion(AQuery, Results) ;
/+ This procudure receives a query against a version and re-
turns the result. */
begin
if the attribute is defined in the target version
then /+ The attribute is defined in the target version. %/
begin
if the semantic of the attribute differs
then /* The semantic of the attribute is dif-*/
/+ ferent from that of the attribute */
/* in the target version. */
invoke the corresponding access han-
dling routine for the semantic change;
endif
end;
else /* The attribute is not defined in the target */
/* version. */
invoke the corresponding access handling routine for
the undefined attribute;
endif
end.

(Fig. 7) Aligorithm for Accessing Instances of Versions

5. Conclusion

This paper proposes a mechanism for accessing
instances regardless of versions of classes in sche—
ma evolution in object-oriented databases. It also
summarizes the issues concerning schema evolution
and approaches to accessing instances regardless of
versions in schema evolution in object-oriented
databases. There is trade-off between the flexibility
of schema modification operations and the overhead
needed for supporting such operations. Semantic
change is not allowed in [2627). The scheme pro-
posed in this paper supports semantic change as an
operation of schema modifications. Access handling
routines are provided to each pair of semantic
changes. Thus, it could reduce the overhead dras-
tically compared to the previous work in which
backdate/update functions are provided to each pair
of versions of the class unless the backdate/update
functions are applied consecutively along the version
derivation hierarchy.

There is further work. Implementation issues
including user interfaces that support the need in
the process of schema evolution are being inves-
tigated. This work can be exploited in the devel-

opment of major applications which need schema
evolution facility such as product data management

system[13,15,16]. We are working on these issues.

References

[1] S. Abiteboul, P. C. Kanellakis, and E. Waller,
"Method schemas,” In Building an Object-
Oriented Database System, The O2 story, Mor-
gan Kaufmann, 1992.

{21 F. Bancilhon, C. Delobel, and P. Kanellakis,
'Building an Object-Oriented Database System,
The Theory of 02’ Morgan Kaufmann, San
Mateo, CA, 1992.

[3] J. Banerjee, W. Kim, and H. F. Korth, "Seman-
tics and Implementation of Schema Evolution in
Object-Oriented Databases,” In Proceedings of
the ACM SIGMOD International Conference on
Management of Data. pp.311-322, May 1987.

[4] D. Beech and B. Mahbod, “Generalized Version
Control in an Object-Oriented Database,” In
Proceedings of IEEE 4th International Confer—
ence on Data Engineering, pp.14-22, Feb. 1988.

[5] E. Bertino and L. Martino, "Object-Oriented
Database Management Systems : Concepts and
Issues,” IEEE Computer pp.33-47, April 1991.

[6] E. Bertino and L. Martino, 'Object-Oriented
Database Systems, Concepts and Architectures,’
Addison-Wesley, 1993.

[71 A. Bjmerstedt and S. Britts, "AVANCE : An
Object Management System,” In Proceedings of
OOPSLA '88, pp.206-221, 1988.

[8] R. G. G. Cattell, 'Object Data Management :
Object~Oriented and Extended relational Data—
base Systems,” Revised Edition, Addison-Wesley,
Reading MA, 1994

[9] R. G. G. Cattell, "The Object Database Standard :
ODMG 2.0, Morgan Kaufmann, San Francisco,
CA, 1997.

[10] S. M. Clamen, "Schema Evolution and Inte-
gration,” Distributed and Parallel Databases, Vol.
2, No.1, pp.101-126, 1994.

[11] R. Elmasri and S. B. Navathe, 'Fundamentals
of Database Systems,” 2nd Ed., The Benjamin/
Cummings, 1994.

{121 R. Gupta and E. Horowitz, 'Object-Oriented
Databases with Applications to CASE, Net-
works, and VLSI CAD,’ Prentice Hall, NJ, 1991.

[13] M. Jin, "An Object-Oriented Database Approach
for Supporting Product Evolution in Agile
Manufacturing,” University of Connecticut, Ph.D.,
1997.

pp.190-192, 1998. _

[15) M. Jin & T. C. Ting, "An Object-Oriented
Database Framework for Supporting Product
Evolution,” Proceedings of the ISCA 13th Inter-
national Conference on Computers and Their
Applications, pp.169-172, March 1998.

[16] R. H. Katz, "Toward a Unified Framework for
Version Modeling in Engineering Databases,”
ACM Computing Surveys, Vol.22, No4, Dec.
pp.375-407, 1990.

[171 A. Kemper and G. Moerkott, 'Object-Oriented
Database Management, Applications in Engi—
neering and Computer Science,’ Prentice Hall,
NJ, 1994.

[18] W. Kim and H. T. Chou, "Versions of Schema
for Object-Oriented Databases,” In Proceedings
of the 14th VLDB Conference, pp.148-159, 1988.

[19] W. Kim, 'Introduction to Object-Oriented Data-
bases,” The MIT-Press, Cambridge MA, 1990.

[20] W. Kim, 'Object-Oriented Databases : Definition
and Research Directions,’ IEEE Transaction on
Knowledge and Data Engineering, Vol.2, No.3,
pp.327-341, September 1990.

[21] H F. Korth, W. Kim and F, Bancilhon, “On
Long-Duration CAD Transactions,” In Readings
in Object-Oriented Database Systems, Morgan
Kaufmann, 1990.

[22] B. S. Lemer and A. N. Habermann, "Beyond
Schema Evolution to Database Reorganization,”

In Proceedings of ECOOP/OOPSLA ‘90, pp.67-
76, 1990.

[23] S. R. Monk and I. Sommerville, “A Model for
Versioning of Classes in Object-Oriented Data-
bases,” Proceedings of the 10th British National
Conference on Databases, pp.42-58, July 1992.

[24] S. Monk and 1. Sommerville, "Schema Evolution
in OODBs Using Class Versioning,” SIGMOD
Record, Vol.22, No.3, September 1993.

[25] D. R. Rao, 'Object-Oriented Databases : Tech-
nology, Applications, and Products,’ McGraw-
Hill, 1994.

[26] A. H. Skarra and S. B. Zdonik, “The Mana-
gement of Changing Types in an Object-
Oriented Database,” In Proceedings of QOPSLA,
pp.483-495, 1936.

[27] A. H. Skarra and S. B. Zdonik, "Type Evolution
in an Object-Oriented Database,” In Research
Directions in Object-Oriented Systems, pp.393—
413, 1987.

[28] A. Snyder, "Encapsulation and Inheritance in
Object-Oriented Programming Languages,” In
Proceedings of the ACM OOPSLA Conference,
pp.38-45, Sept. 1986.

[29] M. Stonebraker, 'Readings in Database Sys-
tems,” 2nd Ed, Morgan Kaufmann, San Mateo,
CA, 1994.

[30] E. Waller, "Schema Updates and Consistency,”
In Proceedings of DOOD, pp.167-188, 1991.

| oj
— —

e-mail : mjin@zeus kyungnam.ac.kr

1982 Aedigta AuEA s
E (o] B4}

19843 #=x#87|ed Agts
EA(FFAAD

1997 IVEIA FEogn AF
H3Ead 4(Fgehh

1985 ~ A A ZFg sty FRFAFEY Rusy

BAEok: ARG dojelwo)x, He v tio] dolE

Hlo]2, ol Edy BAibxg

