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ABSTRACT

This paper presents an evolution program for optimal capacity expansion problem with backlogs in demand which is
to determine when and how much capacity should be added under varying types of demand and cost. To overcome
premature convergence and stalling, we employ an exponential-fitness scaling scheme. To improve the chromosomes, we
introduce hetero-dimensional mutation which generates a new dimension and produces a feasible solution, and
homo-dimensional mutation which mutates the chromosomes in the negative of gradient direction. Finally, a numerical

example is discussed.

1. Introduction

Capacity expansion problems have been studied
over thirty years and applied in a wide variety of
areas, for example, heavy industries, communication
networks, electrical power services and water

resource systems. The purpose of capacity models is
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to determine when and how much capacity should
be added under varying types of demand and cost.
Usually, there exist two types of demand,
deterministic and stochastic. The optimal capacity
expansion with deterministic demand is reported by
[14], [2], [3], [6] and summarized by [13]. Stochastic
case is considered by [5], [1] and [4], etc. In this
paper we will restrict our attention to deterministic
case with continuous time. On the other hand,
evolution programs are a type of stochastic search

methods and have been used widely for numerical



optimization problem([11], [15]), such as optimal con-
trol problems, transportation problems, traveling sales-
man problems, drawing graphs, scheduling and
machine learning. Evolution programs are also stu-
died by several researchers and summarized by [7].
As a research work related closely with this paper,
Gen and Liuf9] presented an evolution program for
continuous time production plan problem which is to
determine a rate of production under varying types
of demand and cost. An evolution program for
optimal capacity expansion problem has been repor-
ted by [10] when shortage of supply is not allowed.

In this paper we present an evolution program for
optimal capacity expansion with backlogs in demand
which is to determine when and how much capacity
should be added under varying types of demand and
cost. To overcome premature and stalling, we
suggest an exponential-fitness scaling scheme. To
improve the chromosomes, we introduce nonhomo—
dimensional mutation which generates a new
dimension and produces a feasible solution, and
homo-dimensional mutation which mutates the chro-
mosomes In the negative of gradient direction.

Finally, some numerical examples are discussed.

2. Capacity Expansion with Backlogs

The criterion used here for determining the best
capacity policy is to minimize the discounted costs
associated with the expansion process, including
costs for expansions, shortages, congestion, idle capa-
city, maintenance and inventory, taking into physical
constraints. In this paper, we consider the following

continuous time case with backlogs in demands.

Capacity

Capacity
o(x.f)

&
Demand

>

Time
(Fig. 1) Capacity Expansion with Backlogs in Demand
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(Fig. 1) charts the curve of demand d(9), ie., a
function that specifies the demand at time ¢ and
expansion of capacity over time under the following

simplifying assumptions :

(1) the equipment has an infinite economic life;

(ii) whenever the demand catches up with the
existing capacity, x units of new capacity are
installed;

(ii1) the planning horizon is transacted after an
arbitrary finite time.

The installation cost that results from a single
capacity increment of size x at time ¢ is assumed
to be given by a function c(x,£ which is in-
creasing in x and decreasing in ¢ The shortage
cost that results from a shortage quantity v at time
t is assumed to be given by a function s(y, 9
which is also increasing in y and decreasing in t.

Our problem is to determine an integer #» and
0=1<t;¢"<t,{T such that the total instal-

lation cost is minimizes, i.e.,
min nmin D=4<tl LT 121 C(d(l‘,url) - d( t,‘), t,) (1)

where ¢; denotes the time when the capacity is

expended 7 times according to a change in demand
and T denotes the upper limited time to consider a
capacity expansion.

However, the previous studies of optimal expan-
sion of capacity only discuss the discrete time case.
The computing method for continuous cases was not
reported by any author. Maybe it is very difficult to
design a traditional approach to solve such a
problem. This is the basic motive to develop an
evolution program.

From the basic eq.(l), we see that this problem
is very different from the classical optimization
because that both of the dimension »# and decision
vector t= (t;,4, -+, t,) are variables, but the cla-

ssical cases have fixed dimension.
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3. Evolution Program

In this section we present an evolution program
to optimal capacity expansion problem. We will
discuss representation structure, initialization process,
evaluation function, selection, mutation and crossover

operations.

3.1 Representation Structure

We use an integer # and a vector V= "(x;, xs,
e X3), € < x;< 1 as a chromosome to represent

a solution ((#;,3), (%, 32),*, (£,3,)) to the optimal

capacity expansion problem, where & is an appre-
ciate small positive number. The mapping from a

chromosome (x, x5, ***, %3,,) into a solution ((#, ),

(t3,92),, (t,, ¥a)) can be written as follows :

tl = 0
_ x2+x4+'-'+x2i_2 . .
ti— XQ+JC4+"'+X2n T, Z—2,3, 7 (2)

Yi=xy, 1=1,2,>,m

It follows from eq.(2) that the solution (#,#,

-, t,) is feasible.

3.2 Initialization Process

We define an integer pop_size as the number of
chromosomes. pop_size chromosomes will be ran-
domly initialized by the following way.

To determine a chromosome, we firstly determine
its dimension, ie, the number of capacity expan-
sions. Usually, the range for possible » can be
given by some prior knowledge. So we can generate
a random integer # in that range, then 2 random
numbers x),xs,**, %9, on the interval [e,1]. A
chromosome is completed, iLe., (%, %3, "+, X2,). Re-
peat this process pop_size times and produce pop_

size initial feasible solutions.

3.3 Evaluation Function

Let 2 denote the original fitness, i.e., the objec-

tive value. Usually, the original fitness proportionate
-reproduction scheme frequently causes two signifi-
cant difficulties : premature convergence termination
at early generations, and stalling at late generations.
To overcome these two problems, Goldberg[il]
suggests a linear-fitness scaling scheme, # = au+ b,
Lee and Johnsonfl2] suggests a modified linear
~fitness scaling scheme, ie., for the lowerfitness
strings, the minimum original fitness #min maps to
0; for the higher—fitness strings, the maximum
original fitness #m,.x maps to a parameter fuuriple
which is greater than 1; the average fitness u
maps to 1. Michalewicz[15] suggests a power law
scaling scheme, « = «*, where k is a real number
which is close to one.

Here we will employ an exponential-fitness scal-
ing scheme suggested by Gen et al.[8] because this
scaling scheme is a combination form of the left
and right extinctive selections to prevent both poor
and super chromosomes from reproduction[17]. We
define three preference parameters p;, p, and p,
(0< p < py<py<1) which can determine three

critical numbers #;, #, and u, such that there are

(py1 * pop_size), (pg* popsize) and (p; - pop_size)
chromosomes which are less than %, %, and u,,
respectively, in the set of the pop_size chromosomes
at the current iteration.

For the optimal capacity expansion, the original
fitness ; maps to 2—e 'x1.63, the original
fitness #; maps to 1, and the original fitness u,
maps to e '=0.37. Then the relation between the

original fitness # and the exponential fitness # is

u—u,
2—exp[————2 1,  wulu
B Uy —up
w = 3
_ YT U
expl 'uz'uo]’ u=u

which is shown in (Fig. 2). Obviously, the
preference parameters p, and p; are used to

designate the chromosomes with extreme values to



be eliminated.
Thus we can define the evaluation function as

follows :

eval VY= |/ w;glwu{ 4

where V is a chromosome, # is the exponential

fitness of V, and #; is the exponential fitness of

chromosome V,, i=1,2, -, pop_size, respectively.
For the above mentioned evaluation function, the

chromosome with higher fitness can have more

chance to produce offsprings.

u

1.63

0.37

3> U

ul 0 uo u Ranking

(Fig. 2) Exponential-fitness Function

3.4 Selection Process

The selection process is based on spinning the
roulette wheel pop_size times, each time we select a
single chromosome for a new population in the
following way :

(a) Calculate the cumulative probability ¢; for
each chromosome V;,
qy= 0 )

(5)
a;= Z:Ieval( V), i=1,2,, pop_size.

(b) Generate a random real number » in [0,1].

(c) Select the 7-th chromosome V; (1 < i <
pop_size) if ¢, < v < g

(d) Repeat steps (b) and (c) pop_size times and

obtain pop_size copies of chromosomes.

3.5 Crossover Operation

We define a parameter P, of an evolution sys-—

il

245t &t1o| Z|A Capacity e 218t

tem as the probability of crossover. This probability
gives us the expected number P,- pop_size of
chromosomes which undergo the crossover operation.

Firstly we generate a random real number y in
[0,1); secondly, we select the given chromosome
if

for crossover y{ P.. Repeat this operation

pop_size times and produce P, - pop size parents,
averagely.

For each pair of parents (vectors Vi and V), if
they have the same dimension, the crossover opera-
tor on V, and V, will produce two children X

and Y as follows :

XZCI‘V1+62'V2
(6
Y=C2'V1+CI'V2

where ¢, ¢ = 0 and ¢+ ¢cy=1. Otherwise, skip
the crossover operation.

Since the constraint set is convex, this arith-
metical  crossover that both

operation ensures

children are feasible if both parents are.

3.6 Mutation Operation

Two types of mutation operators are defined in
this evolution program. The first, hetero-dimen-
sional mutation, generates a new dimension and
then produces a feasible solution. The second,
homo~-dimensional mutation, mutates the chromo—
somes in the negative of gradient direction.

It is well-known that the Taylor’s expansion of a

continuous differentiable function f is
Axt+ a0)=FAx)+(VAx+ 020)) px, x=R" (D

where 0<6<1, VAx) denotes the gradient of the
function f at the point x, Ax is a small pertur-
bation in R". So for the optimal capacity expansion,
it may be better to choose the negative direction of
gradient as the mutation direction.

Because of the complexity of the problem, we

will calculate the 7-th component of the gradient
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(regardless of the existence) approximately by

f(x]’...,xi_}_ Axi:"';xn)_f(xly"'yxi,"',xn)
Ax;

H

8

where 4x; is a small real number.

We define two parameters P,; and P,y of an
evolution system as the probabilities of hetero-
dimensional mutation and homo-dimensional muta-
tion. Then the two probabilities give us the expected
numbers P, - pop_size and P,y - pop size of chro-
mosomes which undergo the hetero-dimensional mu-
tation and homo-dimensional mutation, respectively.

Generating a random real number ¥ in [0,1],
we select the given chromosome for hetero- dimen-
sional mutation and homo-dimensional mutation if
y{P, ad P, <y{P, + P,y respectively.
Let a parent denoted by a vector V= {(x,, x,,
“*,Xx,), be selected. For hetero-dimensional mutation,
we generate a new dimension » and then produce
an' n—dimensional feasible solution by the procedure
initialization. For homo-dimensional mutation, we
choose a direction & which is a negative direction
of the approximate gradient and a large number M
which ensures the operator is probabilistically
complete, if V+ M- d is not feasible, then we set
M as an random number between 0 and M until

it is feasible, thus the offspring is
V=V+M-d 9

Repeat this operation pop_size times and produce
(P, + P,p) - pop_size offsprings, averagely.

3.7 Algorithm

Following selection, crossover and mutation, the
new population is ready for its next evaluation. The
evolution program will terminate after a given
number of cyclic repetitions of the above steps. We
can summarize the evolution program for optimal

capacity expansion as follows.

Step 0. Set parameters
input maxgen; /7 numbers of generations
pop_size; // population size
P .. ; // probability of hetero-
dimensional mutation
P o ; /7 probability of homo~
dimensional mutation

P, ; // probability of crossover
b1, Dy, D 5 // preference parameters
Step 1. Initialization process

for 7 =1 to pop_size do

produce a random integer n,

produce n random real ' numbers
Xy, X, v, x,onle, 115
Vi= (x1, 22, , x,);
endfor

Step 2. Evaluation
for ¢ = 1 to pop_size do
compute the objectives u; for V;,
endfor ~
for 7 =1 to pop size do
compute the exponential-fitness wu; ;

endfor
for i =1 to pop size do

compute the cumulative probabilities

Su ) T
q;= l=lui / = u;
endfor

Step 3. Selection oﬁeration
for i =1 to pop size do
if ( q;—y < random() <= gq; ) then
select V; ;
endif
endfor

Step 4. Crossover operation

fori:1to—mp§3iiedo
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if ( random( ) <= P, ) then
int j = random( pop_size);
int k = random( pop_size);
perform the crossover on j-th and
k-th chromosomes;
endif

endfor

Step 5. Mutation operation
for 7 =1 to pop_size do
r = random( );
if ( ¥ <= P,; ) then
hetero_dimensional_mutation( );
else '
if( Pu{y<P, + P, ) then
homo_dimensional_mutation( );
endif
endif
endfor

Step 6. Termination test
if ( number of iterations < maxgen) then
goto step 2;
else
stop;
endif

4. Numerical Experiments

The program for the evolution program has been
written in C language. We will use it to solve the
following numerical example which is a modification
of one in [16].

We take the demand pattern as
A =b- sin(z—tT n, 0<<T a0

which will be satisfied by the production capacity

and the cost function as

_ (0. a0
c(q’t)_{exp[—at]'(k-i-e'lI), q>0 (11)
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which results from a single capacity expansion of
size ¢ at time ¢

In this numerical example, we set the parameters
as b=10, T=100, a=10.06, k=10, e=10.

In our experiment, the population size is 50, the
probability of crossover is 0.1, the probability of
hetero-dimensional mutation is 0.1, the probability of
homo-dimensional mutation is 04, the preference

parameters p;, p; and p, are defined as 0.1, 0.5
and 0.9, respectively.

Solution

A

/Best Chromosome

T

5 i L 1 L,
0 500 1000 1500 2000 Generation

(Fig. 3) Progress of Evolution

(Fig. 3) shows that in 10 iterations the best
solution of problem is 53.594822; in 100 iterations the
best solution is 53.540710; in 500 iterations the best
solution is 53510918, in 1000 iterations the best
solution is 53.510906; in 2000 iterations the best
solution is 53510899. The process of capacity
expansion is shown by (Fig. 4) in which the
step-like function represents the production capacity
) and the curve represents the demand d(f). The
curve of demand d(t) can be obtained by eq.(10)
when we set the parameters as b=10 and T7=100.
Also, (Fig. 4) shows that the policy is to add
1.995217 at the beginning, 1.959452 at time 12.454445,
1870075 at time 258383461, 1714847 at time
39.583107, 1459610 at time 54.371712, and 1.000799 at
time 71275131 with six times capacity expansions.
In performing the algorithm with 1000 generations,
the CPU time spent for the evolution program is
76.3 seconds on a NEC EWS4800/210I workstation.
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(Fig. 4) Process of Capacity Expansion

The proposed evolution program has been per-
formed on a lot of optimal capacity expansion
problems for different parameters. All of the results
are satisfactory for the same evolution parameters.
For example, when we set the parameters as
b=15, T=100, a=0.05, k=20, e=15,a
run of our evolution program with 2000 iterations
shows that the optimal cost is 128452 with six

times expansions at

(h. b, t3, 1y, b5, t5) = (0.000, 13.398, 27.103,
41.447, 56.850, 74.252).

If we set =8, T=100, «a=0.05, 2= 20,
e=8, a run of our evolution program with 2000
iterations shows that the optimal cost is 59.293 with

three times expansions at

(t1, t3, t3) = (0.000, 23.518, 49.835).

5. Conclusion

In this paper we present an evolution program for
continuous time optimal capacity expansion problem.
Usually, the fitness proportionate- reproduction
scheme frequently cause two significant difficulties:
" premature convergence at early generations, and
stalling at the late generations. We employed an
exponential-fitness scaling scheme to overcome the
two problems as above.

To improve the chromosomes, we introduce
hetero-dimensional mutation which generates a new

dimension and produces a feasible solution, and

homo-dimensional mutation which mutates the
chromosomes in the negative of gradient direction.
Finally, we discuss a numerical example which
shows that the evolution program is an effective
algorithm. For optimization problems, the time
necessary for an algorithm to converge to the opti-
mum depends on the number of decision variables,
the time complexity of most algorithms can increase
geometrically with the number of variables, however,
the time complexity of the proposed evolution program

increases linearly as the dimension increases.
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