Paleomagnetism of the Cretaceous Sedimentary rocks in the Yongyang Sub-Basin

Seong-Jae Doh*, Dongwoo Suk**, and Bum-Cheol Kim*

ABSTRACT: Paleomagnetic and rock magnetic investigations have been carried out for the Cretaceous Hayang Group, exposed in the Yongyang Sub-Basins within the Kyeongsang Basin, eastern South Korea. A total of 452 oriented core samples was drilled from 31 sites for the study. The in-situ site mean direction (D/I=359.4°/51.1°, k=23.6, α95=5.6°) is more dispersed than the mean direction after bedding correction (D/I=6.1°/55.3°, k=41.5, α95=4.2°), indicating that the fold test is positive at 95% confidence level. In addition, the stepwise unfolding of the characteristic remnant magnetization (ChRM) reveals that a maximum value of k is observed at 90% unfolding. Furthermore, the rock magnetic investigations and electron microscope observations of the representative samples show that the main magnetic carrier of the Hayang Group is the detrital specular hematite of single and pseudo-single domain sizes with negligible contribution of pigmentsary hematite grains. These results collectively imply that the ChRM direction is the primary component acquired at the time of the formation of the strata. Provided the primary nature of the ChRM, a magnetostratigraphic correlation between polarities of the studied formation and the Geomagnetic Time Scale indicates that the Hayang Group in the Yongyang Sub-Basin can be correlated to the Cretaceous Long Normal Superchron. The paleomagnetic pole position from this study (217.4°E, 85.5°N, A95=5.2°) is significantly different from those of the Hayang Group in the Euisong and Milyang Sub-Basins. Rather the paleomagnetic pole position of the Hayang Group of the study area is closer to that of the Quaternary period or present time of the Korean Peninsula. It is hypothesized that the study area might be rotated about 25° anticlockwise with respect to the Euisong and Milyang Sub-Basins after the formation of the strata and acquisition of the ChRM, although there is not enough geologic evidence supporting the rotation hypothesis.

서 연

한반도 동남부의 경상부지에 분포하는 화산암류와 화산암류로 구성된 경상누층군은 암상에 따라 하부로부터 신동층군, 하양층군 및 유천층군 (경기호, 1975) 혹은 낙동층군, 신라층군 및 유천층군 (원중권, 1989)으로 구분되며, 이들 지층 의 시대는 주로 고생물학적 및 방사성 동위원소 연대측정 연구를 통하여 백악기로 알려져 있으나 각 지층의 성장한 퇴적 시기에 대하여는 연구자들에 따라 많은 이견이 있다. 하양층군의 경우, 본 층군이 퇴적되는 동안에 일어난 WNW방향의 단층으로 인하여 경상분지가 3개의 소분한 (밀양, 의성 및 영양 소분한)으로 분리되면서 각 소분한의 절강 및 퇴적 양상의 변화가 생겼다 (경기호, 1987). 이로 인하여 각 소분한간의 암상과 지층단계의 차이가 생겨 각 소분한간의 층서 (stratigraphic sequences) 차이를 보여준다. 본 층군은 암상에 의하여 세분되었고 각 소분한간의 대비는 주로 색도 및 열쇠층 (key beds) 등과 같은 암상에 의하여 시도되었으나, 열쇠층은 모든 지역에서 일반적으로 잘 관찰되지 않음에 반면 아니 각 소분한간에 많은 암상의 차이를 보여주며, 층서 분류 및 각 소분한간의 지층단계에 학자들간에 이견이 많다. 예를 들면, 하양층군 하부의 경우 판공산 syntectonic line을 경계로 의성 소분한에 속하는 북쪽은 하
Table 1. Stratigraphic correlation of the Hayang Group in the Kyeong-sang Basin (Chang, 1977).

<table>
<thead>
<tr>
<th>Yongyang Sub-Basin</th>
<th>Eaiseong Sub-Basin</th>
<th>Miliyang Sub-Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shinyangdong Fm.</td>
<td></td>
<td>Keoncheonri Fm.</td>
</tr>
<tr>
<td>Kisadong Fm.</td>
<td>Chunsan Fm.</td>
<td>Chayeaksan Fm.</td>
</tr>
<tr>
<td>Togyedong Fm.</td>
<td>Sagog Fm.</td>
<td>Songnaedong Fm.</td>
</tr>
<tr>
<td>Osippong Fm.</td>
<td></td>
<td>Panyawol Fm.</td>
</tr>
<tr>
<td>Cheongnyangsan Fm.</td>
<td>Jeomgog Fm.</td>
<td>Haman Fm.</td>
</tr>
<tr>
<td>Kasongdong Fm.</td>
<td></td>
<td>Hakkong Fm.</td>
</tr>
<tr>
<td>Tongwhachi Fm.</td>
<td>Kugyedong Fm.</td>
<td>Chilgog Fm.</td>
</tr>
<tr>
<td>Ullyeonsan Fm.</td>
<td>Kumidong Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paekchadong Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ilijig Fm.</td>
</tr>
</tbody>
</table>

부로부터 상부로 일직층, 백자동층, 구미동층, 구제동층, 점곡층으로, 밑양 소분지에 속하는 남쪽은 점곡층, 신라의 암층, 화성산암층으로 각각 세분되어 있는데, 밑양 소분지에 속하는 신라암암층을 정기홍 (1987)은 와성 소분지의 점곡층으로 표할 (1985)은 구미동층과 대비하였다.

이와같이 경상분지내의 총서분류와 지층들의 대비는 소분지를 사이는 물론 각 소분지 내에서도 한계점 및 문제점이 대단히 많고 있다. 경상투충군의 이러한 총서적 문제점 이외에도 각 소분지간의 구조운동 또한 아직 명확히 해설되지 않은 상태이다.

지질개요

영양소분지에 분포하는 하양층군은 하부로부터 올라간

Fig. 1. Geologic map of the Yongyang Sub-Basin, showing the locations of the paleomagnetic sampling sites.

중, 동화지층, 가능동층, 청량산층, 오십봉층, 도계동층, 기사동층 및 신앙동층으로 분류된다 (정기홍, 1977: Fig. 1, Table 1). 본 연구에서는 기사동층 및 신앙동층을 제외한 하양층군의 6개 지층을 대상으로 수행하였다. 연구지역의 지층은 전반적으로 판만한 양각구조를 이루고 있으며, 부분적으로 소구모의 석차 및 향사구조가 발달되어 있다. 영양소분지에 분포하는 하양층군은 주로 역암, 사암 및
세밀로 구성된 쇠파경순(looing)이나, 쇠파경순 중 있었던 화산활동으로 영기성 내지 중층 화산암이 합쳐진다. 하양층은의 최하단부의 올림산은 하양층은의 기저암질층으로 역암과 사암으로 구성되어 있으며 축후는 약 700 m로서 주로 연구지역의 북부에 분포한다. 연구지역의 북부는 올림산층 물질은 대부분이 역암이나 조림질 사암으로 호지거기 연구에 적합하지 않아, 약 2개의 적적 사암 토두에서 시료를 채취하였다. 올림산층의 상부층은 사암으로 구성되어 있다. 축후는 약 1300~500 m로 연구지역의 북쪽으로 갈수록 축후가 증가하며, 6개의 동화층 적적 사암 토두에서 호지거기 시료를 채취하였다. 가동층은 동화층의 상부층으로 역암, 사암 및 세밀로 구성되어 있으며, 축후는 약 250~400 m로 연구지역의 북쪽으로 갈수록 축후가 증가한다. 가동층은 본 연구를 위하여 6개의 적적 사암 토두에서 시료를 채취하였다. 청량산층은 주로 역암이며 사암 및 토두가 혼재하고, 축후는 약 1300~700 m로 연구지역의 북쪽으로 갈수록 축후가 증가한다. 청량산층의 대부분은 암석암자의 입도가 호지거기 연구에 적합하지 않은 조림질로 1개의 적적 사암 토두에서만 시료를 채취하였다. 청량산층의 상부층은 오섬층은 회화암과 역암, 사암 및 세밀로 이루어져 있으며, 축후는 약 500~900 m이다. 오섬층은 본 연구를 위하여 토두가 약간의 특성으로 구성되어 있으며 축후는 약 900 m이다. 오섬층은 본 연구는 13개의 세밀적 적적 사암, 적적 세밀로 구성되어 있으며 축후는 약 900 m이다. 오섬층은 본 연구는 13개의 세밀적 적적 사암, 적적 세밀로 구성되어 있으며 축후는 약 900 m이다. 오섬층은 본 연구는 13개의 세밀적 적적 사암, 적적 세밀로 구성되어 있으며 축후는 약 900 m이다. 오섬층은 본 연구는 13개의 세밀적 적적 사암, 적적 세밀로 채취하였다.

연구방법

고지저기 연구를 위한 시료 채취는 야외용 채집기나 장소의 코어시료 (core sample)들을 채취하였다. 각 노두 (site)에서 가능하면 수직·수평의 동일격으로 시료 채취장을 선정하였으며 브란던봅 컴퍼스를 이용하여 코어 채취장 시료의 방향을 현장에서 측정하였다. 이러한 방법으로 31개의 노두에서 논리적 총 31개의 코어 시료들을 채취하여 (Fig. 1) 실험실에서 22 cm 길이로 절단하여 총 452개의 시료들로 벌였다. 모든 시료들에 대하여 회반자게계 (spinning magnetometer)를 이용하여 자연잔류자회 (natural remanent magnetization) 측정하였으며 비자수 측정기 (magnetic susceptibility meter)를 사용하여 대표적 (magnetic suscep-

tibility)을 측정하였다. 각 노두에서 4개 이상의 표본시료 (pilot sample)들을 선정하여, 각 노두의 단계별 양조사 및 교류자화 실험을 수행하였다. 각 노두의 단계별 양조사 결과에 근거를 두어 시료들의 적적 소자방법을 선택한 후, 모든 선정 시료에 대하여 단계별 소자실험을 실시하여 각 단계별 잔류자회 (remanent magnetization)를 측정하였다. 양조사 실험은 200℃까지는 100℃ 단계, 500℃까지는 50℃ 단계, 500℃ 이상에서는 20℃ 단계로 최대 700℃ 혹은 각 시료의 잔류자회를 기록하는 자연전장의 쿠리온도 (Curie temperature)까지 수행하였다. 양조사 실험시 소자 방장에서 발생하기 쉬운 부수적인 재차화 (systematic parasitic remagnetization) 확득을 방지하기 위해 각 양조 사 단계마다 시료의 방향을 바꾸어 양조사 실험을 실시하였다. 또한, 양조사 시기에 따른 새로운 자연전장의 생성 혹은 자연전장의 화학 변화를 감지하기 위해 각 양조 사 단계에서 잔류자회 측정 후 대조를 측정기를 이용하여 대조를 변화를 측정하였다. 교류자화 실험은 30 mT까지는 5 mT 단계, 30 mT 이상에서는 10 mT 단계로 수행하였다. 실험 중 모든 시료는 Mu-metal 사량에 보관하였다. 각 노 두의 대표시료들을 선정하여 최대 11개의 동반자화 (isothermal remanent magnetization) 확득방법 및 잔류자화기기 (coercivity of remanence) 측정 등의 영역을 연구를 수행하였고, 연구결과를 제외한 자연전장적에서 자연전장의 관찰하였다.

결 과

고지저기 결과

연구결과들의 초기자연자화 강도는 최적값이 5~1000 mA/m이고 현장은 50~1500 mA/m으로 비교적 높은 자연자화 강도를 갖는다. 온방전장에 분포하는
올림산층
본 지층의 주 구성암석은 역암 및 사암으로 고지자기 연구에 적합한 사표체와 장소는 극히 제한되어 있으며, 단지 2개의 사표 노두 (노두 11과 12)에서만 시료를 채취하였다. 두 노두에서 채취한 시료들은 소자단계가 증가함에 따라 방향변화가 불규칙하며, 현재 지구자기 방향과 유사한 저온 혹은 낮은 항자기적 성분을 제외한 고온 성분의 특정전류자화의 방향을 추출할 수 없었다.

동화치층
아 300℃까지의 열소자에 의하여 조성전류자화로 추정되는 저온 성분이 제거된 후, 660℃까지 직교소자도 상에서 원점으로 향하는 단일 성분의 특정전류자화 성분이 추출되었다 (Fig. 3a). 본 지층은 모두 정자극기 방향의 전류자화를 기록하고 있다.

가슴동층
아 350℃까지의 열소자에 의하여 조성전류자화로 추정되는 저온 성분이 제거된 후, 620℃까지 직교소자도 상에서 원점으로 향하는 단일 성분의 특정전류자화 성분이 추출된다 (Fig. 3b). 본 층은 정자극기 방향의 전류자화를 기록하고 있다.

청량산층
아 300℃까지의 열소자에 의하여 조성전류자화로 추정되는 저온 성분이 제거된 후, 680℃까지 직교소자도 상에서 원점으로 향하는 단일 성분의 특정전류자화 성분이 추출된다 (Fig. 3c). 주로 역암으로 구성된 본 지층에서는 역암층내에 혼합된 적색 사암 노두 1개소에서만 고지자기 연구에 적합한 시료를 채취할 수 있었다. 정자극기 방향을 기록하고 있다.

오심봉층
아 400℃까지의 열소자에 의하여 조성전류자화로 추정되는 저온 성분이 제거된 후, 660℃까지 직교소자도 상에서 원점으로 향하는 단일 성분의 특정전류자화 성분이 추출된다 (Fig. 3d). 본 지층은 정자극기방향의 전류자화를 기록하고 있다.

도계동층
아 200℃까지의 열소자에 의하여 조성전류자화로 추정되는 저온 성분이 제거된 후, 640℃까지 직교소자도 상에서 원점으로 향하는 단일 성분의 특성전류자화 성분이 추출된다 (Fig. 3e). 본 지층에서는 13개 노두들에서 시료를
23-31 (Tongwhachi Formation)

M_{max} = 42.6 mA/m

Stratigraphic Coordinates
Scale = 5 mA/m

18 - 1 (Kasongdong Formation)

M_{max} = 17.1 mA/m

Stratigraphic Coordinates
Scale = 5 mA/m

16 - 2 (Cheongryangsan Formation)

M_{max} = 25.4 mA/m

Stratigraphic Coordinates
Scale = 5 mA/m

Fig. 3. Typical thermal demagnetization results (normalized intensity curves, Zijderveld diagrams in stratigraphic coordinates, and normalized susceptibility curves) of samples from the Yongyang Sub-Basin. (a) Tongwhachi Formation, (b) Kasongdong Formation, (c) Cheongryangsan Formation, (d) Osippong Formation, and (e) Togycdong Formation. Demagnetization steps are shown below sample number.

채취하였으며 이들의 평균 특정진류자화는 모두 정자극기 방향을 보여준다.

일반적으로 평균 특정진류자화 방향과 고지자기극 (paleomagnetic pole)의 위치 계산은 각 층에 대한 평균 값을 이용하여 계산한다. 본 연구의 경우 하양층군의 각 층을 구성하는 노동의 수가 충분하지 않아 각 노동의 평균 값을 이용하여 평균 특정진류자화 방향과 고지자기극의 위치를 계산하였다. 이러한 방법으로 계산된 하양층군
d) 15-7 (Osippong Formation)

<table>
<thead>
<tr>
<th>NRM</th>
<th>T100</th>
<th>T200</th>
<th>T300</th>
<th>T350</th>
<th>T400</th>
<th>T450</th>
<th>T500</th>
<th>T520</th>
<th>T540</th>
<th>T560</th>
<th>T580</th>
<th>T600</th>
<th>T620</th>
<th>T640</th>
</tr>
</thead>
<tbody>
<tr>
<td>T660</td>
<td>T800</td>
<td>T700</td>
<td></td>
</tr>
</tbody>
</table>

\[M_{\text{NN}} = 761 \text{ mAm}^{-1} \]

\[\text{Stratigraphic Coordinates} \]

\[\text{Scale} = 99.99999 \text{ mAm}^{-1} \]

\[\text{Step} \]

\[0 \quad 200 \quad 400 \quad 600 \]

\[\chi_{\text{NN}} \]

\[1.8 \quad 1.6 \quad 1.4 \quad 1.2 \quad 1.0 \quad 0.8 \quad 0.6 \quad 0.4 \quad 0.2 \quad 0.0 \]

\[100 \quad 200 \quad 300 \quad 400 \quad 500 \quad 600 \quad 700 \]

\[\text{C}^\circ \]

e) 30-10 (Togyedong Formation)

<table>
<thead>
<tr>
<th>NRM</th>
<th>T100</th>
<th>T200</th>
<th>T300</th>
<th>T350</th>
<th>T400</th>
<th>T450</th>
<th>T500</th>
<th>T520</th>
<th>T540</th>
<th>T560</th>
<th>T580</th>
<th>T600</th>
<th>T620</th>
<th>T640</th>
</tr>
</thead>
<tbody>
<tr>
<td>T660</td>
<td></td>
</tr>
</tbody>
</table>

\[M_{\text{NN}} = 30.6 \text{ mAm}^{-1} \]

\[\text{Stratigraphic Coordinates} \]

\[\text{Scale} = 5 \text{ mAm}^{-1} \]

\[\text{Step} \]

\[0 \quad 200 \quad 400 \quad 600 \]

\[\chi_{\text{NN}} \]

\[1.8 \quad 1.6 \quad 1.4 \quad 1.2 \quad 1.0 \quad 0.8 \quad 0.6 \quad 0.4 \quad 0.2 \quad 0.0 \]

\[100 \quad 200 \quad 300 \quad 400 \quad 500 \quad 600 \quad 700 \]

\[\text{C}^\circ \]

Fig. 3. Continued.

등온진류차와 취득실험 결과에 의하면 연구지층들의 실험을 1) 300 mT에서 90% 내외의 편모상태에 도달하는 경 (유형 1, Fig. 5a), 2) 500 mT에서 완전한 자기적 편모상태에는 도달하지 못하지만 90% 내외의 편모상태에 도달하는 경 (유형 2, Fig. 5b), 3) 자기장의 강도가 증가함에 따라 등온진류차의 값이 증가함에 1 T의 자기장에서도 편모상태에 도달하지 않는 경 (유형 3, Fig. 5c)의 세 유형으로 분류할 수 있다. 유형 1은 시료 내에 헤플자성광물 (ferrimagnetic mineral)과 경사 반강자 성광물 (canted antiferromagnetic mineral)을 포함하고, 경사 반강자성광물의 함량이 헤플자성광물의 함량에 비하여 적은 경우로 층간산층과 오심산층의 시료들에서 관

약석자기 결과
Table 2. Paleomagnetic results from the Hayang Group in the Yongyang Sub-Basin.

<table>
<thead>
<tr>
<th>Site</th>
<th>Site</th>
<th>n/N</th>
<th>Dg</th>
<th>Ig</th>
<th>Ds</th>
<th>Is</th>
<th>k</th>
<th>α95</th>
<th>VGP Lat.</th>
<th>VGP Long.</th>
<th>dp</th>
<th>dm</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.33</td>
<td>129.05</td>
<td>24/24</td>
<td>6.8</td>
<td>39.2</td>
<td>11.7</td>
<td>54.5</td>
<td>58.0</td>
<td>3.9</td>
<td>80.4</td>
<td>224.7</td>
<td>3.9</td>
<td>5.5</td>
</tr>
<tr>
<td>4</td>
<td>36.35</td>
<td>129.06</td>
<td>21/22</td>
<td>357.2</td>
<td>52.7</td>
<td>350.8</td>
<td>56.6</td>
<td>54.2</td>
<td>4.4</td>
<td>82.6</td>
<td>46.5</td>
<td>4.6</td>
<td>6.4</td>
</tr>
<tr>
<td>5</td>
<td>36.36</td>
<td>129.05</td>
<td>19/20</td>
<td>345.7</td>
<td>57.5</td>
<td>358.9</td>
<td>51.8</td>
<td>105.6</td>
<td>3.8</td>
<td>85.7</td>
<td>321.7</td>
<td>3.5</td>
<td>5.2</td>
</tr>
<tr>
<td>6</td>
<td>36.41</td>
<td>129.07</td>
<td>17/19</td>
<td>343.5</td>
<td>51.8</td>
<td>340.3</td>
<td>60.0</td>
<td>29.1</td>
<td>6.5</td>
<td>74.1</td>
<td>60.5</td>
<td>7.4</td>
<td>9.8</td>
</tr>
<tr>
<td>7</td>
<td>36.44</td>
<td>129.09</td>
<td>14/18</td>
<td>2.1</td>
<td>56.6</td>
<td>16.3</td>
<td>62.0</td>
<td>237.9</td>
<td>2.6</td>
<td>76.0</td>
<td>186.6</td>
<td>3.1</td>
<td>4.0</td>
</tr>
<tr>
<td>8</td>
<td>36.45</td>
<td>129.00</td>
<td>13/14</td>
<td>335.5</td>
<td>50.5</td>
<td>336.7</td>
<td>55.9</td>
<td>72.9</td>
<td>4.9</td>
<td>71.3</td>
<td>45.1</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>9</td>
<td>36.35</td>
<td>129.09</td>
<td>6/7</td>
<td>1.0</td>
<td>52.7</td>
<td>5.8</td>
<td>56.3</td>
<td>999.7</td>
<td>1.7</td>
<td>85.3</td>
<td>214.0</td>
<td>1.8</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>36.34</td>
<td>129.05</td>
<td>8/10</td>
<td>5.9</td>
<td>56.8</td>
<td>9.4</td>
<td>49.3</td>
<td>102.5</td>
<td>6.0</td>
<td>79.9</td>
<td>255.6</td>
<td>5.3</td>
<td>8.0</td>
</tr>
<tr>
<td>11</td>
<td>36.44</td>
<td>129.05</td>
<td>16/17</td>
<td>1.4</td>
<td>54.4</td>
<td>14.3</td>
<td>52.3</td>
<td>127.1</td>
<td>3.4</td>
<td>77.7</td>
<td>233.1</td>
<td>3.2</td>
<td>4.7</td>
</tr>
<tr>
<td>12</td>
<td>36.43</td>
<td>129.05</td>
<td>18/20</td>
<td>358.5</td>
<td>52.6</td>
<td>10.1</td>
<td>58.8</td>
<td>561.9</td>
<td>1.5</td>
<td>81.6</td>
<td>196.6</td>
<td>1.7</td>
<td>2.2</td>
</tr>
<tr>
<td>13</td>
<td>36.45</td>
<td>129.02</td>
<td>9/10</td>
<td>13.9</td>
<td>55.8</td>
<td>23.9</td>
<td>50.7</td>
<td>450.4</td>
<td>2.8</td>
<td>69.6</td>
<td>227.1</td>
<td>2.5</td>
<td>3.8</td>
</tr>
<tr>
<td>14</td>
<td>36.43</td>
<td>129.04</td>
<td>12/14</td>
<td>30.4</td>
<td>38.5</td>
<td>27.9</td>
<td>48.2</td>
<td>54.2</td>
<td>6.3</td>
<td>65.5</td>
<td>228.7</td>
<td>5.4</td>
<td>8.2</td>
</tr>
<tr>
<td>15</td>
<td>36.37</td>
<td>129.04</td>
<td>21/24</td>
<td>341.1</td>
<td>59.0</td>
<td>336.7</td>
<td>64.6</td>
<td>163.2</td>
<td>2.5</td>
<td>70.1</td>
<td>76.0</td>
<td>3.2</td>
<td>4.0</td>
</tr>
<tr>
<td>16</td>
<td>36.47</td>
<td>129.10</td>
<td>23/23</td>
<td>10.8</td>
<td>14.6</td>
<td>1.8</td>
<td>35.8</td>
<td>54.1</td>
<td>4.2</td>
<td>73.0</td>
<td>303.4</td>
<td>2.8</td>
<td>4.9</td>
</tr>
<tr>
<td>17</td>
<td>36.47</td>
<td>128.57</td>
<td>9/10</td>
<td>317.3</td>
<td>44.3</td>
<td>357.2</td>
<td>64.7</td>
<td>82.5</td>
<td>5.7</td>
<td>80.0</td>
<td>117.9</td>
<td>7.4</td>
<td>9.2</td>
</tr>
<tr>
<td>18</td>
<td>36.47</td>
<td>128.57</td>
<td>8/8</td>
<td>311.6</td>
<td>51.4</td>
<td>346.8</td>
<td>72.5</td>
<td>169.3</td>
<td>4.3</td>
<td>67.3</td>
<td>110.6</td>
<td>6.8</td>
<td>7.6</td>
</tr>
<tr>
<td>19</td>
<td>36.47</td>
<td>128.54</td>
<td>8/10</td>
<td>16.6</td>
<td>43.7</td>
<td>23.1</td>
<td>40.2</td>
<td>60.8</td>
<td>7.2</td>
<td>65.7</td>
<td>247.4</td>
<td>5.2</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Upper Group Mean

<table>
<thead>
<tr>
<th>Mean</th>
<th>17/17</th>
<th>356.6</th>
<th>50.9</th>
<th>22.3</th>
<th>7.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4.9</td>
<td>56.0</td>
<td>40.4</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.6</td>
<td>205.0</td>
<td>K=26.3 A95=7.1</td>
<td></td>
</tr>
</tbody>
</table>

Lower Group Mean	12/14	51.3	24.6	8.9	
	7.7	54.4	40.2	6.9	
	83.7	226.9	K=28.0 A95=8.3		
Mean	Total	359.4	51.1	23.6	5.6
Mean	29/31	6.1	55.3	41.5	4.2
	85.5	217.4	K=27.7 A95=5.2		

n/N: number of specimens used in mean/measured; Dg (Ds) and Ig (Is): in-situ (tilt-corrected) declination and inclination; k: Fisherian precision parameter; α95: radius of cone of 95% confidence interval; VGP: virtual geomagnetic pole; dp: the semi axis of the confidence ellipse along the great-circle path from site to pole; dm: the semi axis of the confidence ellipse perpendicular to the great-circle path; K: the best-estimate of the precision parameter k for the observed distribution of site-mean VGPs; A95: the radius of the 95% confidence circle about the calculated mean pole; *: Not included in mean calculation.

참고로, 동일 시료들의 전자영향기계로는 50 mT 내외 혹은 그 이하의 값을 보여주고 있다 (Table 3). 유형 2는 해리 자성광물과 더불어 유형 1이 비해하여 보다 많은 양의 경사 반각자성광물이 함유되어 있는 경우로, 오심분출 및 도계 동층의 시료들로 보다 잘 관찰된다. 이 시료들의 전자영향기계 값은 115~150 mT의 범위로 시료 내에 상당한 양의 경사 반각자성광물이 함유되어 있음을 지시한다. 유형 3은 주 자성광물이 경사 반각자성광물로, 동체추출, 공승동층, 청 랜산층 및 도계동층의 시료들로 관찰된다. 동일 시료들 의 전자영향기계는 200~600 mT의 범위로 주 자성광물
이 경사 방향자성성질임을 지시한다.

전자현미경 관찰

영양소분지에 분포하는 하양층군은 주로 역암, 사암 및 세일로 구성된 퇴적암으로, 사암 및 세일 중 대표적인 시료에 대하여 전자현미경을 이용한 자성성질의 관찰을 실시하였다. 전자현미경 관찰 결과 기세의 적절식과 자성석의 구분이 가능한 경우에는 광물명을 사용하였으며, 구분이 되지 않는 경우와 두 광물을 통칭할 경우에는 철산화물 (iron oxide)라는 용어를 사용하였다.

세일시료에 대한 전자현미경 관찰 결과 수 내지 수십 μm 크기의 스펙큘라 적절식 (specular hematite)으로 해석되는 철산화물이 가장 빈번히 관찰되었다. 세일시료에 서 관찰된 단축 길이는 ~10 μm, 장축 길이 ~25 μm인 철산화물 입자는 약간 마모된 주상의 자성 형태로 스펙큘라 적절식으로 해석되며 석영 (Qtz), 조정석 (albite, Ab) 및 거의 변질을 받지 않은 흑운모 (biotite)와 함께 관찰되었다 (Fig. 6a). 사암 시료에서도 ~70 μm 크기의 타형의 철산화물 입자가 석영 (Qtz), 화강석 (anorthite, An) 및 미량의 방해석 (Ca)과 함께 관찰되었다 (Fig. 6b). 이상과 같은 철산화물 입자들은 압석 생성 후 압석 내의 변질작용에 의해 이차적으로 형성된 자성석 광물이기보다는 퇴적 당시 유입된 퇴적기원의 철산화물 (detrital iron oxides)로 해석하였다.

이와 함께 압석 입자 사이를 따라 형성된 피그먼터리 적절식 (pigmentary hematite)으로 보이는 각각의 입자 크기가 1 μm 또는 그 이하인 미세한 철산화물 및 흑운모-녹나석의 변질과정을 통하여 흑운모를 일부 침환한 철산화물이 확인되었다 (Fig. 6c). 그러나 이들 중 1 μm 이
Table 3. Coercivity of remanence (Hcr) of selected samples.

<table>
<thead>
<tr>
<th>Type</th>
<th>Sample #</th>
<th>Hcr (mT)</th>
<th>Rock Type</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-1</td>
<td>61.4</td>
<td>Sandstone</td>
<td>Ulyeonsan</td>
</tr>
<tr>
<td></td>
<td>12-1</td>
<td>55.2</td>
<td>Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-7</td>
<td>28.7</td>
<td>Basalt</td>
<td>Osippong</td>
</tr>
<tr>
<td></td>
<td>7-2</td>
<td>121.1</td>
<td>Basalt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-7</td>
<td>130.6</td>
<td>Basalt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14-2</td>
<td>115.8</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-5</td>
<td>137.2</td>
<td>Basalt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29-15</td>
<td>149.9</td>
<td>Red Shale</td>
<td>Togvedong</td>
</tr>
<tr>
<td></td>
<td>1-9</td>
<td>593.2</td>
<td>Red Shale</td>
<td>Tongwachii</td>
</tr>
<tr>
<td></td>
<td>2-1</td>
<td>545.2</td>
<td>Red Shale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-3</td>
<td>551.5</td>
<td>Red Siltstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-3</td>
<td>548.5</td>
<td>Red Shale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26-10</td>
<td>478.9</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-8</td>
<td>286.1</td>
<td>Red Sandstone</td>
<td>Togvedong</td>
</tr>
<tr>
<td></td>
<td>4-2</td>
<td>323.9</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-3</td>
<td>287.8</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-7</td>
<td>196.1</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-2</td>
<td>421.3</td>
<td>Red Shale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-5</td>
<td>306.1</td>
<td>Red Shale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-9</td>
<td>322.6</td>
<td>Red Shale</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22-8</td>
<td>267.0</td>
<td>Red Shale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-5</td>
<td>480.0</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-10</td>
<td>398.7</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-2</td>
<td>559.1</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-5</td>
<td>337.5</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>487.4</td>
<td>Red Shale</td>
<td>Cheongryangsan</td>
</tr>
<tr>
<td></td>
<td>8-3</td>
<td>552.7</td>
<td>Red Shale</td>
<td>Kasondong</td>
</tr>
<tr>
<td></td>
<td>9-9</td>
<td>491.7</td>
<td>Red Shale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>247.6</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19-2</td>
<td>338.2</td>
<td>Red Sandstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-6</td>
<td>351.9</td>
<td>Red Shale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31-8</td>
<td>534.2</td>
<td>Red Shale</td>
<td></td>
</tr>
</tbody>
</table>

여의 미세한 철산화물은 암석의 크기가 작아서 전자현 경하에서는 광물의 판별이 어려운 점을 고려하면 단단한 기구적 (single domain)에 해당하는 크기가의 차질석이 무게를 반하려 배제할 수는 없다. 이와 유사한 것으로 혹은 암석 내에 형성된 피그레터이 차질석으로 보이는 암석 크기가 1 μm 또는 그 이하의 철산화물이 세밀한 암석 섬유에서 관찰되었다. 이 경우 혹은보는 성분상으로 보아 변 질의 정도가 미약하나 철산화물은 배포 양상으로 보아 차질석으로 형성된 것으로 해석된다 (Fig. 6d). 또한 변질성의 피그레터이 차질석은 이차 형성의 섬유형 플라카이 차질석보다 관찰되는 빈도가 현저히 낮다. 이광채와 같이 영양소분께에 분포하는 하양충층 내의 자성광물들은 주로 수 μm 크기에서부터 수 십 μm 까지 담하 는 희석 당시 유입된 스플라카이 차질석이 주증을 이루며, 따라서 이들이 희석 당시의 특성전자화화를 기록하고 있 는 것으로 해석된다. 암석 내에 미약한 변질작용에 의해 이차적으로 형성된 것으로 보이는 피그레터이 차질석이 관찰되기에는 한산한 빈도가 극히 낮으므로, 이들이 형 성된 시기의 기록된 2차 지화상성이 이에 의한 희석 당시의 특성전자화화에 대한 영향은 없을 것으로 해석된다.
로 청량산층과 가시동층을 경계로한 상·하부의 특성간
류자화 방향은 동계적으로 동일한 방향으로 해석된다
(Fig. 4). 따라서 영양지역에 분포하는 하양층군의 특성간
류자화 방향은 연구대상인 총 29개 노두에서 판찰된 각
노두의 특성간류자화 방향의 평균값 (지층경사 보정 전: D/I=359.4/51.1°, α_m=5.6°; 보정 후: D/I=61.1/55.3°, k=41.5, α_m=4.2°)으로 대표되어 (Table 2). 영양
소온지에 분포하는 하양층군의 평균 특성간류자화 방향을
지층경사 보정 후의 방향이 지층경사 보정 이전의 방향보다 더 분산되므로 지층경사 이전에 획득된 성분임을
알 수 있다. 청량산층과 가시동층 사이의 암상 변화에 근
거한 두 층 사이의 비정합관계는 두 층 형성에 시간적 공
백기가 존재함을 의미하며, 이들 상·하부간의 특성간류자화
방향의 동일성은 고지자기학적 비정함은 존재하지
않음을 지시하며, 이는 두 층의 형성에 특성간류자화 방
향의 차이를 나타낸만큼 시간적 공백기가 없었거나, 두
층 형성시 충분한 시간적 공백이 있었다고 가정하더라도
그 기간동안 본 연구지역의 특기할 만한 위치변동이 없었
음을 지시한다.
지층경사 혹은 습곡작용이 일어나는 도중에 지층이 간
류자화를 획득하면, 지층을 완전히 수평으로 복원한 상태
가 아닌 부분적 복원상태에서 최대의 k값을 가질 수 있
다. 그러므로 지층경사 보정 또는 습곡시험 적용시 단계
적 지층경사 보정에 따른 k값의 변화를 관찰하여, 최대의
k값을 갖는 지층경사 보정단계를 확인하는 단계적 습곡
시험 (stepwise unfolding test)을 적용하여 간류자화 획
득시기를 결정하여야 한다. 일반적으로 최대 k값이 100
(0%±20%) 지층경사보정시 관찰되면 간류자화는 지층경
사 혹은 습곡 이전 (후)에 획득되었던 것이며, 최대 k값이
30~70% 지층경사보정 단계에서 관찰되면 간류자화는 지
층경사 혹은 습곡 도중에 획득되었던 것으로 해석한다.
Figure 7은 단계적 경사보정에 따른 정밀도 변수 (k)의

Fig. 6. Electron Probe Microanalyzer photomicrographs (back-scattered electron image, BEI) of representative samples of the study area. (a) Elongate iron oxide grain (bright grain) is interpreted as specular hematite, (b) Anhedral iron oxide grain with quartz, anorthite and calcite is presumably detrital in origin, (c) Aggregates of submicron-size iron oxide grains and pigmentary hematite formed through biotite-chlorite-iron oxide alteration processes, (d) Pigmentary hematite grains along the cleavages of less altered biotite grain. Scale bars are shown on the photomicrographs.
변화를 도시한 것으로, 연구지역의 하양층군 29개 노동들
에서 축정된 평균 특성전류화 합방향이 90%의 지층경사
보정 단계에서 최대의 k값을 보여주어 연구지역에 기록
된 특성전류화가 지층경사 혹은 습곡작용 이전에 획득
되었음을 지시한다.

본 연구의 대상 양식 중 일부 퇴적암 시료들은 오성봉
층의 현무암 시료들을 제외한 대부분의 시료들은 암석반이로 암석지구 연구결과는 주 자성광물이 적절임을 지
시하고 있다. 또한 영양소분지에 분포하는 하양층군의 대
표적인 시료에 대한 전자현미경판별 결과에 의하면 하양
층군의 자성광물들은 주로 수 μm 크기에서부터 수 십
μm의 단단한 퇴적 단단한 석회로 적절함이 잘
을 이루며 (Fig. 6a and 6b), 이와 함께 암석내의 미약한
변질작용에 의해 이차적으로 형성된 것으로 해석되는 피
그렌데리기 적절함과 관계가 있는 (Fig. 6c and 6d), 적
석암에 존재하는 적절함으로서 퇴적암들과 같이 퇴적
기작으로 매우 안정된 퇴적전류화 (detrital rema-
nent magnetization)를 기록하고 있는 비교적 암석의 크
기가 큰 석회화 적절함, 퇴적물이 퇴적 이후에 화학작
용에 의해 생성되어 자석적으로 불안정한 낮은 소자이
계에서 섭계 제도되는 점자전류화학을 기록하는 1 μm 이
하 크기의 피그렌데리기 적절함의 2차지형태가 알려져 있
다 (에, Collinson, 1974; Tauxe et al., 1980). 한편 영양
소분지에 분포하는 하양층군에 기록된 특성전류화는
단계적 습곡성형 및 지층경사 보정 진후의 분산도 변화에
의해 지층경사 혹은 습곡작용 이전에 획득되었음을 앞에
서 설명하였다. 따라서 전자현미경 관찰에서 보여진 것
과 같이 가장 반변히 관찰되는 석회화 적절함은 혹은 본
의 퇴적 단계에 기록된 특성전류화를 기록하고 있고,
피그렌데리기 적절함은 2차 자화된 점자전류화를 기록하
고 있는 것으로 해석된다. 이와 같은 결과는 암석지구 연
구 결과와 함께 비교적 입자가 큰 단단기구역에서 위단단기
구의 크기의 석회화 적절함이 특성전류화의 기록
에 합이고, 석회화 적절함에 의하여 기록된 특성전류화
는 지층경사 이전의 지층 퇴적시 혹은 지층 퇴적작용에
획득된 1차 전류화임을 명백히 지시하고 있다.

영양지역에 분포하는 총 29개 노동들에서 화순된 하양층
군의 지층경사 보정 후 특성전류화 방향은 D/I=6.1
55.3°(k=41.5, α=4.2°)이며, 이 방향으로부터 구한 금
지지기극의 위치는 217.4°E, 85.5°N (K=27.7, α=5.2°)이다. 영양소분지에 분포하는 하양층군의 금지지기
극의 위치와 의성 및 밀양소분지에 분포하는 하양층군에
대한 금지지기극의 위치를 비교할 때, 영양소분지에 분
포하는 하양층군의 금지지기극의 위치는 의성 및 밀양소
분지에 분포하는 하양층군의 금지지기극들의 위치와는
상이한 제4기 및 현대의 극과 유사한 곳에 위치하고 있
다 (Fig. 8). 이러한 결과는 영양소분지에 분포하는 하양
층군의 제4기 이후의 지층화의 의성으로 해석될 수 있
-framework 소자 실험 결과 (Fig. 3), 단계적 지층경사
보정 결과 (Fig. 7) 및 전자현미경 관찰 결과 (Fig. 6) 등
을 종합하여 영양소분지에 분포하는 하양층군의 특성전
류화 방향이 지층경사 이전인 지층 퇴적시 혹은 지층
퇴적작용에 획득된 1차 전류화임을 확인하였으며 그
가능성을 배제한다. 영양소분지의 하양층군과 의성
및 밀양소분지의 하양층군 사이의 대비에 어려운 점들이
많이 있으나, 영양소분지의 하양층군이 의성 및 밀양소
분지의 하양층군과는 다르다고 보는 것은 다.
따라서, 새 소분지에 분포하는 하양층군의 퇴적시키기
동일 혹은 적어도 유사하다고 가정을 하면, 새 소분지들
의 자극위치가 구조운동에 기인한 것으로 해석할 수 있
다. 더욱이 영양, 의성 및 밀양소분지에 분포하는 하양층
군의 금지지기극들은 북극을 통과하는 호상에 위치하며,
이런 금지지기극들의 호상분포는 연구지역의 의성 및
밀양소분지의 지층 퇴적시키기의 차이에 의한 결과이기보
다는 구조운동에 의한 대체적 결과에 의한 결과임을 의
미한다. 영양소분지의 하양층군의 특성전류화 방향과
의성 및 밀양소분지에 분포하는 하양층군의 금지지기극
(각각 202.2°E, 64.9°N, K=19.6, α=7.6°, 석동우와 도
성재, 1996; 204.1°E, 66.4°N, K=62.3, α=4.2°, 도성재
와, 1994)으로부터 영양소분지의 위치로 계산된 방향
(D/I=30.9°/58.6°, α=2.9°)과는 복잡은 동통작용으로
동일하나 평균이 약 25°의 차이를 나타내고 있다. 이와
같은 평균의 차이는 단순한 지구의 반시계방향으로의 회
전에 의한 결과로 가정하고 연구지역에서 석화된 특성전
류화방향을 시계방향으로 25° 보정한 후 이로부터 계
산된 고지가지구의 위치는 211.7°E, 65.0°N (A=5.2°) 로써 의성 및 밀양소분지에서 구해진 극의 방향과 일치하고 있다 (Fig. 8). 그러나 상대적 회전을 아기시킨 결과조동은 현재까지 수행된 연구들로의 차이가 있으나, 간격의 규명은 하기 어려운 실정이다. 경상분지에서 분포하는 하양동쪽은 의성의 북부 지역에서 확장되면서 회전이 시작하였으며, 회전 동양 지괴동어가 수방향이었다 (장기홍, 1977). 영양소분지와 의성소분지의 경계인 안동단층은 하양측의 북쪽으로 시작되어 하양측의 회전 후 간격동안 계속되었으며, 장단층으로 시작하여 이후 북단 쌍화되었다고 보고되었다 (장기홍, 1977, 1978). 자국들 의 위치를 분석하기 위하여 두 분지들 사이에 상대적 수평동어로 의성 회전운동이 있어야 한다. 안 동단층은 주행이동층이 아닌 이상 일반적으로 분지의 사이에 수평 동양절을 아기시키지 않는다. 그러므로 영양소분지와 의성 및 밀양소분지 사이의 자국위치의 차이가 회전시기의 차이가 아닌 구조적 동양운동이 기인한 것이라면 자국의 위치를 분석시킨 동양동안은 안 동단층으로는 설명될 수 있으며, 앞으로 이에 대한 보다 더 자세한 연구가 요구된다.

본 연구에서 분석된 영양소분지에 분포하는 하양측군은 모두 정상화 방향만을 기록하고 있다. 연구지구 및 외부의 의성 및 밀양소분지에 분포하는 하양측군도 모두 정상화를 기록하고 있어 이 지역 연구자들에 의해 이들 층군의 자기초석적 연대는 백악기 정상화 슈퍼크론 (Cretaceous Long Normal Superchron)이 시작되는 애피안 (Aptian) 이후로 해석되었다 (도성재, 1994; 도성재, 1994). 본 연구에서 얻어진 특정성자자세 방향은 모두 정자자회 전회석시기 기록된 1차 자세이며 약 25°의 시계방향으로 보정을 통한 의해 의성 및 밀양소분지에 분포하는 하양측군의 특정성자자세 방향 및 고지기자극의 위치와 일치하므로, 영양소분지에 분포하는 하양측군의 회전시기 및 특정성자자세 횡단시기는 영양소분지 이후인 백악기 정상화 슈퍼크론에 대비시킬 수 있다.

결 론

1. 영양소분지에 분포하는 하양측군은 주로 단자기구의 서쪽 하양측군의 구내의 스펙트럼. 각각의 양기하하여 특정성자자세를 기록하고 있으며, 이 특성성자자세의 성분들은 전통적인 습목시키와 단계적 습목 사람들이 통과한 지층 경사 이전의 지층 회전시 혹은 지층회전 직후에 기록된 성분이다.

2. 영양소분지에 분포하는 하양측군의 비정합면으로 해석되는 정상성문과 가용세층 사이를 기록한 상, 하부 하양측군의 경사방향이 평균 특성성자자세 방향을 통 계적으로 동일한 방향으로 정상성문과 가용세층 사이의 경사면은 고지기자극 비정합면이 아닌 것으로 해석하였다. 전체 하양측군의 평균 특성성자자세 방향은 D/I = 6,5°/55.3° (k=4,25, α=4.2°, N=29 sites)이며, 고지기자극의 위치는 217.4°E, 85.5°N (K=37.8, A=6.2°)이다.

3. 영양소분지에 분포하는 하양측군의 고지기자극은 의성 및 밀양소분지에 분포하는 하양측군의 고지기자극 위치와 차이를 보이나, 이들은 북극을 통과하는 초상에 분포하므로 의성 및 밀양소분지에 분포하는 하양측군과 같은 시기의 저하를 획득한 후 소분지간의 상대적 회전운동에 의해 차이를 나타내는 것으로 해석하였다. 그러나 이를 백악기 특성성자로 이어진 층적이 층적이 없으므로 앞으로 이에 대한 보다 더 자세한 연구가 요구된다.

4. 영양소분지의 하양측군은 모든 지층들이 정상화 방향만을 기록하여, 이들의 회전 및 자세적 역 시기는 영양소분지 압력 초에 시작되는 백악기 정상화 슈퍼크론 기간 중인 것으로 해석하였다.

감 사

본 연구는 한국과학자계주 후원 정밀물자자위연구센터의
연구비와 고려대학교 특별연구비의 지원에 의하여 수행되었으며, 이에 감사드립니다. 자료처리 및 도면작성에 도움을 준 고려대학교 지구환경과학과의 김원년 및 윤순옥에게도 감사드립니다. 또한, 본 논문을 세상에게 심사하면서 좋은 자격을 하여주시던 김경덕 교수님과 김인수 교수님께 심심한 감사를 드린다.

참고문헌

김용준, 홍만철 (1963) 한국지질도도목 도폭 1:50,000, 국립지질조사소.
김용준, 홍만철, 원희란, 박헌민, 박영대, 김기혜 (1963) 한국지질도 도폭 1:50,000 국립지질조사소.
도성재, 박찬호, 지세정, 최선규 (1990) 경상북도 의성 일대에 분포하는 백악기 지층의 지질학적 자료, 지질학회지, 26권, p. 594-595.
도성재, 황창수, 김광호 (1994) 밀양 소분지에 분포하는 경상누층군 최적암류에 대한 고지지기 연구, 지질학회지, 30권, p. 211-228.
박찬호, 도성재, 민경락 (1991) 의성지역에 분포하는 백악기 지층에 대한 고지지기 연구, 지질학회지, 27권, p. 549.
석동우, 도성재 (1996) 의성지역에 분포하는 백악기 지층에 대한 특성분류자화방향의 재교찰, 지질학회지, 32권, p. 47-64.
장기홍 (1977) 경상분지 상수중성지의 층층, 퇴적 및 지구조, 지질학회지, 13권, p. 76-90.
장기홍 (1978) 경상분지의 층층, 퇴적 및 지구조 (II),지질학회지, 14권, p. 120-135.