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An Optimal Algorithm for Repairable-ltem Inventory
System with Depot Spares

Jong-Soo Kim* - Kyu-Chul Shin**

—8 Abstract &

We consider the problem of determining the spare inventory level for a multiechelon repairable-item inventory
system. Qur model extends the previous results to the system which has an inventory at the central depot as
well as at bases. We develop an optimal algorithm to find spare inventory leveis, which minimize the total
expected cost and simultaneously satisfy a specified minimum service rate. The algorithm is tested using
problems of various sizes to verify the efficiency and accuracy.

1 . Introduction for a long time by many researchers, There are
two main streams of research in this area.

Repairable items are referred to as components METRIC model, developed by Sherbrooke [13]
which are expensive, critically important, and assumes infinite repair capacity. In his model,
subject to infrequent failures such as engines of there are many bases and a central depot. A
a fighter plane or a ship. They should be re- failed item at a base is dispatched to a repair
placed or repaired immediately, if failed, for the facility and a spare, if available, is plugged in.
system to maintain availability. For this reason Otherwise, it is backordered. A repaired item
the policy on the inventory or shortage levels is fills the backorder or is stored at a spare
very important and naturally has been studied inventory point if there is no backorder. Feeney
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and Sherbrooke [4], Muckstadt [10,11] and
Muckstadt and Thomas [12] extended this
model. However, as Albright [1] has pointed
out, models assuming infinite repair capacity
always underestimate the amount of con-
gestion in the system and, consequently, result in
fewer spares than are really needed to a-
chieve a specified backorder level.

Another stream of study adopts the finite
repair capacity, constant-failure-rate assumptions.
The models in this stream are more realistic
than the comparable METRIC models, and are
certainly more difficult to solve due to the huge
multidimensional state spaces involved. Gross et
al [7] considered a two-echelon (two levels of
repair, one level of supply) system and presented
an implicit enumeration algorithm to calculate the
capacities of the base and depot repair facilities
as well as the spares level which together guar-
antee a specified service rate at a minimum cost.
Inevitably, the enumeration scheme of the method
requires considerable computer running times
even for relatively small problems. Gross et al
[5,6] and Albright and Soni [2,3] analyzed the
operating characteristics of a given system with
multidimensional Markov process. In another
paper Albright [1] developed an approximation
algorithm with a single type of item stocked and
repaired by several bases and a central depot.
The proposed methods in this stream concentrate
on the analysis of the current status of a given
system and, consequently, are impractical to
apply to optimization problems.

More recently, Kim et al [9] developed an
algorithm to determine the optimal inventory level
under finite repair capacities. They presented a
method to solve a two-echelon (two levels of

repair, one level of supply) system. In this paper
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we consider a more general system than the one
analyzed in Kim et al. [9]. In other words, we
consider the system whose central depot also
has its inventory as well as the bases. Using
properties of the system, we are able to develop
an optimal algorithm to find the amount of spare
items at each inventory which minimize the total
expected holding plus shortage costs and
simultaneously achieve a specified minimum ser-
vice rate for large real problems.

This article is organized as follows. In Section
2 the model we consider is described and, in Sec—
tion 3, we introduce the algorithm for the model
and present an example to explain the algorithm.
Lastly, in Section 4, we summarize the results of
the study and identify some areas for future re-

search.

2. Model Description

We consider a system with (I {o) bases, a

central depot and a single tvpe of repairable-

item as depicted in Figure 1. The depot has its
own spares inventory which enables the depot-
repairable item to be replaced immediately with a
spare, if available. Time intervals between fail-
ures at base i are exponentially distributed with
mean, 1/4;, i=1,2,-,1. A failed item at base
i 1s base-repairable with probability «; and a
base spare replaces it if one is available. Other—
wise, replacement is delayed until a spare be-
comes available. A failed item, which is depot—
repairable with probability 1— a;, should be sent
to the depot for repair. If the depot has spares
available, then a spare is immediately sent to the
base where the failed item has originated and
the failed item is stored at the depot inventory



after repair. On the other hand, if the depot
spares are not available, then the replacement of
the failed item with a spare is delayed until a
spare becomes available. We refer to this case as
depot-shortage with respect to a base. If there
exist two or more depot-shortages outstanding
when a spare becomes available, we assume that
the depot-shortages are filled by FCFS(first-
come, first-served) basis. Additionally, we as-
sume that no lateral transshipment is allowed
due to the computational complexities required to
do optimization.

The total number of failed items of base ¢, in

the sense that they are currently unavailéble for

o

replacement, are the sum of the items at the base
repair center, items in depot-shortage with respect
to the hase 7, and items in transit between the

depot and base .

Let us denote
P;(n) = probability distribution that there are
n items at the repair center of base i,
P,(D)= probability distribution that there are
D items at the depot repair center,
P,;(k;) = probability distribution that there are
k; items at the depot repair center

which are depot-shortage with respect
to base 7,
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[Figure 1] Schematic Representation of the Repairable-item Inventory System



P,(m;) = probability distribution that there are
m; items in transit from or to base ¢,
P(z;)= probability distribution that the total

number of failed items of base 7 is z;

To obtain the steady-state probability distribu-
tion of total number of failed items at each base,
we derive probability distributions of, P;(n),

P(k) and P,(m)).

2.1 Probability Distribution of Iltems at the
Base Repair Center

Let there be ¢; service channels at the repair
center of base ¢ and the repair times at each
channel are assumed to be iid. exponential with
mean 1/4,. Since we assume infinite population,
the base repair center can be modeled as an
M/M/ ¢; queueing model, where the arrival
(base-repairable failure) rate is a;A; and the
service rate is u,. So the steady-state probability
distribution that there are # items at the base
repair center 7, P;(#n), is given by the follow-
ing (1) and (2).

(alAt)an(O)/n!#zn (1éngcz)

(n

Pi( 7) :[
(@A) "POY ¢! “clpul? (n=c)

where

¢, -1
PO=] 3 (@i) lntul + Ve adf )
1
XC;‘#,’/(Ci#i*az‘/ii)] )
Note that the above probability distributions do
not exist unless the steady-state cindition, ie.,

@Al e < 1, is satisfied.
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2.2 Probability Distribution of Depot-Shortaged
ftems at the Depot Repair Center

The depot-repairable failures at base ¢ occur
according to Poisson process with rate (1 —a)A4;
which are independent of each other. This implies
the superposed arrival stream at the depot repair
center is Poisson with rate 31 (1 —a)A;. As
we assume that there are ¢, channels at the
depot repair center, and also, the repair times are
1id. exponential with mean 1/, the probability
that there are D items at the depot repair
center, P,(D), is derived from the equations of

an M/M/ ¢, queueing model as follows!

Pd(D)—[

where

(A PA0) /Dl (D= ¢,
(ADPPA0) [ “eful (D=cy)

ol X
PAO) =[ E A D Ve (Gal i

-1
XCdﬂd/(C(/ld—/ld)] (4)

and the steady-state condition A,/cezqs <1 has
to be satisfied.

Now let us find the probability distribution of
k;, the number of items at the depot repair
center, which is supposed to be returned to base
i, le., depot-shortaged items of base i. When
we denote actual fill rate of depot as F,, the
arrival rate of total depot-shortaged items 1s
S (1—a)a(l1—Fy) and the rate of depot-
shortaged items of base 7is (1—a)A{1—F,).
Actual fill rate of depot, F,, means the ratio of
arriving items that are replaced immediately by
depot spares. Then the ratio of total depot-
;.

shortaged items to those of base i, 1S ex-
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pressed as in equation (5).

0=(1= )il F)) 31— a)i1-F,)
=(1—a)A;/ ’Zl(l*a,‘)ﬂ[ (5)

Now, assuming that there are s, spare items
at the depot, the conditional probability that there
are k; depot-shortaged items with respect to
base 7 given that D items are depot shortaged

is given by

Pz'd(kz' | D):

1 if £;=0,D=s,
0 if k=0, D=g,
(7

k_‘”)ﬁf’(lfﬁ,) DR DY sa (6)

Equation (6) means that, if there still remain
spares in the depot, then depot-shortaged item
to base 7 can not exist. On the other hand, if
D> s,;, e, all spares in the depot have been
sent to bases, then depot-shortage accumulates
and, among them, depot-shortage with respect 10
base ¢ has binomial distribution. By uncondition—
ing on Din Py(k; | D), we can obtain P (k,)

as follows:

Phk) = 33 Pk | D) PAD) (D

2.3 Probability Distribution of Items in Transit

It is well known that the probability distribu-
tion of the number of items in transit from the
depot repair center to base 7 is equal to that of
the depot repairable failures at the base in the
steady state (see, for example, p.710 of Hillier
and Lieberman [8]. Therefore, the probability
distribution of the number of items in transit

from the depot to the base is Poisson. Since the
number in transit from base 7 to the depot repair
center is also Poisson and the sum of indepen-
dent Poisson’s is Poisson, the total number of
items in transit is also Poisson. When we denote
the transit time between base 7 and the depot
by ¢, the probability distribution of the number
of items in transit is Poisson as given in

equation (8).

P(m) =02 A—a)it)™
xexp(—2(1—ay)A;t)/m,! (8)

2.4 Probability Distribution of Total Failed
[tems

In the steady state, the total failed items of a
base are the sum of the depot-shortaged items,
the items currently at the base repair center and
in transit. So we can obtain the probability
distribution of the total failed items of base 7,
P(z;), by convolution of the previously derived

probability distributions as in equation (9).

P(Z,')
- ;;Pt( mi) N Pi{l(ki) . Pi(zig ki" 7”1’) (9

2.5 Total Expected Cost and Minimum Fill
Rate

If the total failed items of base i, z; is
greater than the spare inventory level s;, then
the shortage cost &; is incurred for each back-
order. On the other hand, the holding cost %, or

h; 1s charged on the number of spares in the

depot or in bases since it is reasonable to con-
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sider that the holding cost is charged depending
on where it belongs rather than where it is
located. When we assume linear holding and
shortage costs, the total expected cost of the
systemn, which is the sum of the expected holding
cost of the depot and the shortage and holding
costs of the bases, can be obtained by:

TC(S)
—hasat Bhsot Bb 3 (2~ s)Az)

= hasit Bhstb, B (2-5)Pz))

© hasat 2, TCAs) (10)

Let TC(s; | s;) = conditional expected cost of
base ¢ when the depot inventory level is set to
Sq.

Theorem 1. The conditional expected cost func-
tion of base i, TC:(s; |sz), is unimodal on the
interval 10, ©J.

Theorem 2. When h,;/b;, <1, spare inventory
level of base i minimizing TC,(s; | sq) satis-

fies equation (11).

21})(21: Si+k| Sd)
Chilb: <2UP(2,-:si+k|sd) an

where P(z; sy is the conditional probability
distribution of the total failed item of base 1.

Note that the the probability distribution of the
total failed item is defined in equation (9).
Lemma 1. When k;/b;> 1, spare inventory level
minimizing TC;(s; | sg) is zero.

The problem we are going to solve is to find
the spare inventory levels of the depot and base
which fulfills the specified minimum required fill

>
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rate of each base with minimum total expected
cost, which is defined in equation (10). Thus the
actual fill rate F;, which is the ratio of failed

items that are replaced immediately by base
spares, should be larger than or equal to the
minimum required fill rate f;. Here the actual

fill rate means ratio actually achieved in the field
compared with the minimum required fill rate,
which is a target value at each base. The re-
lationship between the two parameters can be
expressed as in (12).

s~ 1
F,=Pr{z; <s}= Z]UP(zi)zfi (12)

Theorem 3. Let s; be the inventory level with
the minimum expected cost of base i and s; be
the minimum of s; values satisfying equation
(12) for a given s,. Then the spare inventory

level to achieve the minimum fill rate at

minimum cost of base i for the given s, is max

{s7, s}

The total expected cost of the system also has
interesting properties. Before introducing them,
we define additional notations.

TC;(s; | sp) =minimum of the TC{s;) satisfy—
ing specified minimum fill rate of base ¢ for a

given depot inventory level s,.

TC=%TCi(s; | s4>®)=sum of the mini-
mum expected base costs when the depot has
infinite number of spares.
Theorem 4. s, greater than s, such that {s,|
he> D1 TCi(s; | s4)— TC} aan not be opti-
mal.

When the depot has infinite number of spares,
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there exists no depot-shortaged item with
respect to bases. In this case, the total failed
items of a base are sum of the items currently
at the base repair center and in transit. Thus
IC in Theorem 4 can be calculated using the
following equations (13) and (14).
IC=ETCi(s, | symo) = 3, Wi

=1 s; gwen s~
(hisit b, 3 (2= )2 (13)

zi=5,t1

B(2)) =2 P{m,) - P(z,—m) (14)

The proofs of Theorems and Lemma are given
in the Appendix.

3. The Algorithm

We now formally present an algorithm to de-
termine the optimal spare inventory levels of the
depot and bases to meet a specified minimum fil]
rate of each base at minimum total expected
cost. The algorithm could be very effective by
limiting the search region using the properties
described above.

Step 0. Verify that the following steady-state
conditions are satisfied.

Sl —a)A/carq <1 and @4,/ cipi <1 for
i=1,2,-,L

If the conditions are met, go to Step 1. Other-
wise, stop since the system can not reach steady
state.

Step 1. Calculate Pi(D), P,(n), P,(m;) until
the probability becomes less than e=10"*. Let
sq—0.

Step 2. For i=1,2,-,I, perform the following
2.1-2.3 steps to calculate T°C.

Step 2.1. Calculate P(z;) until the probability

becomes less than =10 ¢,

Step 22. If h;/b;> 1, sets; 0.

Otherwise set s; <-smallest integer s; satis-

fying 232 1 P(z; = s,+ k) <hi/b; <5 Pl(z;

=s;+ k).

Step 23. Calculate the minimum inventory

level satisfying the minimunﬁ fill rate, s,.
Step 24. Let s;= max{s},s,} and calculate
TC=hisi+ o277 1(z;—s) Pz).

Step 3. IC =], TC,

Step 4. For i=1,2,-,1, perform the following
4.1-44 Steps to calculate for each base the base
inventory level satisfying minimum fill rate at
minimum cost.

Step 4.1. Calculateand P, (k; | s») and P(z;
| s,) until the probability becomes less than
e=10"".

Step 42. If #,/b) 1, sets; < 0.

Otherwise set s; < smallest integer s; satis~

fying 25 1P(zi=s;+ k| sg) <hi/b; <Zi-oP

(z;=s;+ k| sp).

Step 43. Calculate the minimum inventory

level satisfying the minimum fill rate s,.

Step 44. Let si=max{s},s;). s denote

the desired spare inventory level of base i

when the depot spare is given as s,.

Step 5. TCi(s; | s9) = TCLs} | s)) =12 (hys:
th 3 (2= sz | s,

If the current s, satisfies &, 31, TCH(s, | o)
— TC, then go to Step 6. Otherwise let s
s¢+1 and go to Step 4.

Step 6. The s, and s;’s corresponding to the



minimum total expected cost found so far are
solution of the algorithm.

In Steps 2 and 3, we calculate a low bound of
the total expected cost. In Step 4, we find the
inventory level for each base satisfying the spec—
ified minimum fill rate at minimum base cost
under the current depot spare level. Using the
low bound and the current total expected cost,
we check, in Step 5 if we have completed
searching depot spare levels inside the region
where optimal solution can reside and, if so, we
stop. Otherwise the current depot spare level is

incremented by one and we repeat searching.

3.1 Exampie

We test the algorithm using a program coded
in C on a Pentium (166MHz CPU) based IBM
compatible PC system. Consider a multiechelon
inventory system with two bases and a depot.
The holding costs for each base and a depot are
20 respectively, and the shortage costs for each
base are set to 100. Other relevant data is
described in <Table 1>. <Table 2> shows the
results considering the total cost only. For base
1, when we neglect the minimum fill rate, the
desirable inventory level is 24 at a minimum
base expected cost of 541.115. For base 2, it is
12 items at a cost of 285.82. For the depot, it is
1 item at a cost of 20. The solution of the
example, inventory levels satisfving the mini-
mum fill rate at minimum cost, is summarized in
<Table 3>. The spare levels and the cost are
decreased as the minimum fill rate is decreased
until the minimum point is reached. As soon as
the inventory level arrives at the minimum point,

it remains there despite a further decrease in the

rz
4
i

minimum fill rate,

<Table 1) Data for the Example

rfi‘{fr\ A a; C; o t iy b;
Base 1 200 | 0623 2 80 | 1130 ] 20 100
Base 2 100 | 0743 1 150 | 1502 | 20 100
Depot 5 30 20

(Table 2> Minimum Cost Inventory Level

Base/Depot Inventory level Minimum cost
Basc 1 24 1115
Base 2 12 285.820
Depot 1 20

Total cost | 846985

Table 3> Output of the Algorithm for the Example

Minimum| Actual fill | Spare level Minimun cost
fill rate rate Base | Dept Dase Depot| Total
0.99 | 0910990 | 3419) | O [6814HUGBLID| 0 | 1062606
095 | 00970 | 3007 | 0 |6REHBEBT| 0 | B240
090 | 096093 | 2703 | 1 (300820310003 ] 20 | %095
085 1 086000867 | 26(14) | 1 [504%4(07.135) 1 20 | %7629
0.80 | O8280806) | 250131 | 1 | H3562(288483) | 0 | 852045
075 | 07820811) | 24012) | 2 |526908(280524) | 40 | 84743
070 1 07820720 ) 24012 | 1 541115250800 20 | 84695
065 | O7320722 | 24012 | 1 |B4L1520680 0 | %695
060 [ 070722 [ 2412) | 1 |HALUISEHE80 | 4 | 869D

*

Entry in parenthesis is for the base 2.

To test the accuracy of the algorithm, we per-
form extensive computational experiments. For
the test, we generate 10 different problems for 5,
10 and 15 base cases, i.e., 30 problems in total.
We also develop a simulation model programmed
in AWESIM (Version 1.2) simulation language
and the interface program coded in C. For each
problem, we run a simulation 10 times. Costs and
spare levels obtained by the algorithm and
averages of those generated by the 10 simulation
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runs are compared with each other. The main
objective of the comparison is to verify that the
algorithm is able o produce an accurate expected
cost of the system. Another concern is to make
certain that the algorithm detects the optimal
spare inventory levels correctly. From the com-
parisons, we notice that the algorithm is able to
generate cost values within 1.0 percent in
percent difference unit and the spare inventory
levels coincident with the inventory levels with a
lowest simulated cost value.

In addition, to get an idea of how fast the
algorithm is for real problems, we solve problems
of extremely large sizes. It is observed that it
takes 245, 670 and 1,310 seconds in CPU time to
solve 50, 100 and 150 base problems respectively.
Since the problem with 150 hases could be
considered as the biggest problem we may
encounter in real application, we conclude that
the algorithm is efficient enough to be applied to
real world problems. Reducing search region by
taking advantage of the properties we found not
only guarantees finding optimal solution but also

drastically reduce running time of the algorithm.

4. Concluding Remarks

In this paper we develop an optimal algorithm
to calculate the spare inventory level which
satisfies a predetermined minimum service, With
this approach we are able to solve large problems
quickly and accurately. For further study, one
can relax the assumption of infinite number of
items operating at each base or can consider a
more general case where the spares in a base
can be transferred to another if it has no spare

to replace the failed item.

APPENDIX

1. Proof of Theorem 1

Since the shortage and holding costs are linear
with P(z,] s)=0, TC(s,; | s, is unimodal.

2. Proof of Theorem 2

Since TC,(s; | spis unimodal function, unless
s;=10 is minimum point, there should exist a point
s; osatistying TC(s;+ 1, 1'sp) » TCAs; | sp) for
Lz0 and TCAs;— Iy |sz) » TCi(s;|s,) for
b0,

Tcl(sz' | Sd): h,‘S,‘+ bz :(2?+1(21'75[)P(2i1 S{/)-
TC;’(51+'1 | Sd)
=h{sitDHo; 20 (=5~ DP(z] 5.
TC(si+11s)—TCi(s; sy
=h{s;+ D+ b(P(s;+2|s)+2P(s;+3 s,

+ “')“‘ h,‘S,“ bz(P(-51+1 | Sd)

+2P(si+2 | sp)+ )
=h;—b(P(s;+1|sp)+P(s;+2] s

T (s, +3 150+ )
=k~ b B Ptk 8]

Thus, if TC,(s;+11sy) > TCi(s;]s, is to be
satisfied,

hi—b,[ 21P(si+k| sd)] >0 =

ilp(sf* klsg) <hi/b, (A1)

In addition, when (Al) is satisfied by s, and
s;+1,

TC(s;+21s)—TC:(s; | sy
=2h;— b P(s;+11s)+2P(s5,+2 | s,)



+2P(s;4+3 | sg)+2P(s;+4 1 sp+-]
:2121_ b,[ 21P(Si+k| Sd)“" EZP(S,+k‘ Sd)]

h;  h

( glP(sz»+k| sa) <hilb; and EZP(S,-HH 52

CRP(s,+ k| s) <hilb)
Thus, TCAs;+21sp > TC{s; sy is also sat-
isfied.
This applies to s;+3,s;+4,s;+5,.

TC(s;—11s4)
=hi(s;i— D)+ b; 22:_(21'_51+1)P(Zi| Sa)

=h{s;i— 1)+ bl P(s; | s) +2P(s;+ 1152
+3P(s;+21s)+ 1.
TC(si—115—TCLs; | s
=hs;—h;+ b P(s; | s +2P(s;+ 1159
+3P(s+2 | s+ 1= his;i— bl P(s;+1 150
+2P(s;+21s) +3P(s;+3 | s+ -1
=—n;+ b,[P(s; | s)) + P(s;i+ 1150
+P(s;+21s)+]
=+ b, 2y P(si+ R 50
Thus if 7Ci(s;— 115> TCi(s;|sa) is to be
satisfied,

b,—EP(s,—+k| s) O ks
zg‘bP(sﬂ-H sa) > hil b; (A2)

When (A2) is satisfied by s; and s;—1, TC{s;
—2) > TC{s;) is also satisfied. This applies to
si—3,5,— 4, s,—9,

Thus s; minimizing 7C;(s; | s») should satisfy

ol

S 1 P(si+ R sp) <hilby <X 1P(sit+ k| sa).

3. Proof of Lemma 1

We note that in proof of Theorem 2 that
TC(s;— L | sp> TCi(s; 15y for 4> 0 can
not be satisfied when #%,/6,> 1. Thus the point

with the minimum 7C,(s; | s;) value is zero.

4. Proof of Theorem 3

When, s;=>s,, inventory level with minimum
cost simultaneously satisfies the minimum re-
quired fill rate. Thus the desired inventory level
is si. On the other hand, if the reverse is true,

inventory level with minimum cost can not sat-

isfv the minimum required fill rate and the level
should be increased up to the level s; where
required fill rate starts to be satisfied. Therefore

the spare inventory level to achieve the minimum

fill rate at minimum cost is max {si, s}.

5. Proof of Theorem 4
A lower bound of X1, TCi(s; |sy) is the

value when s; — . Thus the maximum reduc-
tion in 7°C(S) by incrementing s, by one is at
most the difference between current value and
the lower bound, ie, 21 ,TC!(s;))— 1IC.
Since the additional holding cost for increasing
depot stock by one is kg, if ks> [Si-1TCi(s;
| s — TCl, ie, a cost increase due to the

increase of depot stock by one unit is larger than
a largest possible cost reduction by incrementing
depot stock, it is not worthwhile to increase

depot stock sy by one unit. Similarly, it is not

worthwhile to increase depot stock s; by more
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