The Effect of Chordae Preservation in Mitral Valve Replacement

Kong Soo Kim, M.D.*, Jung Ku Jo, M.D.*, Ja Hong Gu, M.D.* Tae Ho Kim, M.D.*

Background: Mitral valve replacement (MVR) with chordal preservation in patients with mitral valvular disease has been proven to be beneficial for left ventricular function and for reduction of postoperative complication. Material and Method: From January 1995 to July 1996, the early postoperative results of mitral valve replacement were compared between 20 patients who underwent chordae resection (classic MVR group) and 10 patients who underwent chordae preservation (preservation MVR group) in the Department of Thoracic and Cardiovascular Surgery, Chunduk National University Hospital. Result: There was no significant difference between the two groups in age, sex, NYHA functional class, cardiothoracic ratio, echocardiographic finding, cardiopulmonary bypass time and aortic cross clamping time. The difference between preoperative and postoperative cardiothoracic ratio after 3 months was not statistically significant. At echocardiographic left ventricular evaluation, ejection fraction and fractional shortening decreased slightly in the preservation group than preoperative value (p=0.47, p=0.12), however, decreased significantly in the classic MVR group (p=0.03, p=0.04), and were statistically significant between the two groups (p=0.03, p=0.02). Conclusion: We conclude that MVR with chorda preservation seems to have a beneficial effect on postoperative left ventricular performance in mitral valve disease than the classic MVR.

Table 1. Preoperative characteristic(I)

<table>
<thead>
<tr>
<th></th>
<th>C-MVR</th>
<th>P-MVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>age (years)</td>
<td>43.5±10.5</td>
<td>48.9±8.8</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>7:13</td>
<td>1:9</td>
</tr>
<tr>
<td>NYHA Functional class</td>
<td>2.7±0.6</td>
<td>2.8±0.4</td>
</tr>
<tr>
<td>BSA(m²)</td>
<td>1.58±0.14</td>
<td>1.44±0.15</td>
</tr>
<tr>
<td>MS</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Dominant lesion</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>MSI</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>TR</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Associated disease</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Neurofibroma</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

C-MVR; Classic Mitral Valve Replacement.
P-MVR; Chordae Preservation Mitral Valve Replacement.
MS; Mitral Stenosis, MR; Mitral Regurgitation.
MSI; Mitral Steno-insufficiency. TR; Tricuspid Regurgitation.
LA; Left Atrium.

실 기능을 향상시켰을 증명하였다. 이에 저자는 판막 및 전
삭을 보존하여 판막과 유두근의 연속성을 유지하는 승모판
막 치환술을 기존판막 치환술과 병행하여 시행하였고, 두가
지 술식의 비교를 통하여 판막 및 전막판막 승모판막
막이 최 meis 기능에 미치는 영향을 규명하고자 연구를 시
행하였다.

대상 및 방법

1995년 1월부터 1996년 7월까지 전북대학교 병원
외과학교실에서 승모판막 치환술에 있어서 승모판막 치환술
을 시행한 30례를 대상으로 하였다. 이 중 판막의 전후엽
을 치환하여 2~3mm 만을 남기고 절제한 후 그 절제한 절면
의 일부를 함께 절제한 후 인공판막을 이식한 20례와(기존치
환술), 판막 및 전막을 보존하여 판막과 유두근의 연속성을
유지한 판막 치환술(보존치환술) 10례로 구분하였다. 주입된
으로 승모판 환속공이 각각 9례, 1례였으며, 승모판
판막판막 및 전막판막은 각각 5례, 3례 승모판 판막 판막
판막판막이 각각 6례
의 것으었다. 또한 동반질환으로 삼적판 패쇄판전지의
각각 6례, 2례 있으며 좌심방 혈전증이 기존판막에서 5례, 좌심방
신경심부종이 보존치환술에서 1례 있었다. 숨전 심실세동의
각각 15, 7례 있었으며, 수술 방법은 인공심폐기구를 이용한
재외환
환과 중등도의 저해심도율을 60분 간격으로 4℃ cristalloid 싱정
지역을 주입하였고, 국소 양약을 위해 염증물을 사용하였다.
기존치환술에서는 임상 및 전막을 완전 절제하고 임조 판
막을 판막이나 판막의 기저부에 위치 시켰다. 보존 치환술
군에서는 전막절을 판막으로부터 2~3mm 정도 떨어져서 절
계를 가하고 판막의 양방울을 정복하여 전 외측 전막 및 판
막과 후내측 전막 및 판막으로 분리할 2cm Etiobond 봉합
시술로 pledger를 이용한 수평봉합 봉합으로 전막의 제거는 전막
판 주위의 판막에, 후내측 전막은 후내측 두개의 판막에 각
각 제거를 시도함으로써 안정적판막의 판막에 장애를 주지
않고 최심실 유출로를 방해하지 않는 밑으로에서 가능한
한 판막조직과 대부분의 전막을 보존하여 판막과 유두근의
연속성을 유지하였다. 기계판막의 개개 운동이 원활한 것
인 후 병합물을 갖추었으며, 또한 기계 판막 삽입시 최적
성과 기관 판막을 사용하여 판막이 기계판막 운동장애를 받
지 않는 위치로 하고, 그 경우에도 기계판막 운동장애를 입
으키는 판막 부속기는 부분결제를 하여 운동장애를 제거하
였다. 수술 전후의 심호흡변, 심전도, 심초음파상 최심실 기
능의 변화를 T test를 이용하여 비교하였다.

결 과

수술시 환자의 연령은 24세부터 62세 사이로 평균 45.3±
10.3세였고 남자 8명, 여자 22례로 여자가 많았다. 수술
NYHA 기능적 분류상 T 그룹간의 차이가 없었으며, 숨전
심호흡 변화는 평균 0.57±0.08, 0.61±0.07로 T 두 그룹간의 통계
적 차이가 없었다. 숨전 심호흡과 경사상 좌심실의 확장기말
용적(EDV), 수측기말 용적(ESV), 구형변환율(Ejection Fraction),
단축분리율(Fractional Shortening) 등도 두 그룹 사이의
차이가 없었다(Table 1, Table 2).
수술에 사용된 판막은 low profile bileafet 판막을 이용하였으며, 하중된 판막의 크기는 기존 치환판의 평균 29.0±2.0 mm 보존 치환판은 평균 28.1 ± 1.11 mm로 기존의 술식을 이용한 경우에 더 큰 판막을 치환할 수 있었다.(p=0.02)
기존치환판에서 보존치환판보다 대동맥 차단시간 및 체외 순환시간이 더 걸었으나 통계적 의의는 없었다(Table 3).
수술 후 NYHA 기능 분류 및 심호흡이 두 군 모두에서 전혀 비해 유의하게 감소하였으나 두 군간 차이는 없었으며, 심전 상생세동이 술 후 정상동조로 바튼 경우가 기존 치환판군에서 2에 있었고 상생세동 1개가 기존 치환판군에서 새롭게 발생하였다.
수술 후 심초음파에 의한 좌심실 기능의 변화를 살펴 보았을 때, 기존 치환판군에서 구협분휘율(Ejection Fraction)은 술 전 0.55±0.11에서 술 후 0.47±0.08로 감소하였으며, 단축분휘율(Fractional Shortening)은 술전 0.30±0.08에서 술 후 0.24±0.05로 통계적으로 유의하게 감소하였다(Table 4. EF: p=0.03, FS: p=0.04), 건조판절 치환판군에서는 구협분휘율은 술 전 0.53±0.10에서 술 후 0.52±0.10, 단축분휘율은 술전 0.29±0.06에서 술 후 0.27±0.06으로 별다른 변화를 보이지 않았다.
좌심실 유출로의 협착이나 인조 판막판막의 장애는 두 군 모두에서 관찰되지 않았으며, 술 후 출혈 1예, 완전 심실등 1예, 각 1예 등도 조기 합병증이 기존 치환판군에서는만 발생하였으며, 조기 및 만기 사망은 없었다.

고 찰

인공심배기를 이용한 체외순환으로 심장내를 직시하는 수술이 1953년 Gibbon에 의해 성공리에 시행된 후 1961년 Starr와 Edwards 등에 의해 Ball 판막을 승모판판래부진환자에 시술한 이래로 인공판막 치환술에 있어서 많은 발전을 거듭하였다. 또한 심근보호법의 발달 및 체외순환의 방법 및 제료의 개선, 술 후 관리의 발달 등으로 사망률 및 유병률이 현저한 감소를 보이고 있으나 여전히 다른 심장수술과 비해 높은 사망률을 보이고 있다.
1922년 Wiggers & Katz, Rushmer 등에 의해 건조판 및 유두근에 의한 승모판판 및 좌심실의 연속성이 좌심실 기능에 중요한 역할을 한다고 하였는데, 이는 수술시 좌심실유두근의 수축으로 담액은 승모판판 좌심실 내로 향하게 하여 좌심실의 장축을 줄이고 단축을 증가시키는데 된다.

<table>
<thead>
<tr>
<th>Table 3. Operative characteristics</th>
<th>C-MVR</th>
<th>P-MVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve size (mm)</td>
<td>29.0±2.0</td>
<td>28.1±1.11</td>
</tr>
<tr>
<td>Additional procedures (n)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>T. annuloplasty</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>LA plication</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Thrombectomy</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total perfusion time (min)</td>
<td>146.6±66.5</td>
<td>137±46.7</td>
</tr>
<tr>
<td>ACC time (min)</td>
<td>117.4±48.5</td>
<td>109.5±37.5</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Table 4. Postoperative data</th>
<th>C-MVR</th>
<th>P-MVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA Functional class</td>
<td>1.45±0.50</td>
<td>1.40±1.49</td>
</tr>
<tr>
<td>ECG change</td>
<td>NSR→AF: 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AF→NSR: 2</td>
<td>0</td>
</tr>
<tr>
<td>CT ratio</td>
<td>0.51±0.06</td>
<td>0.54±0.00</td>
</tr>
<tr>
<td></td>
<td>0.55±0.04</td>
<td>0.54±0.02</td>
</tr>
<tr>
<td></td>
<td>0.51±0.05</td>
<td>0.56±0.10</td>
</tr>
<tr>
<td></td>
<td>0.52±0.05</td>
<td>0.55±0.08</td>
</tr>
<tr>
<td>Echocardiogram</td>
<td>0.24±0.05</td>
<td>0.27±0.06</td>
</tr>
<tr>
<td></td>
<td>3.60±0.47</td>
<td>4.01±0.73</td>
</tr>
<tr>
<td></td>
<td>4.76±0.49</td>
<td>5.48±0.82</td>
</tr>
<tr>
<td></td>
<td>0.47±0.08</td>
<td>0.52±0.10</td>
</tr>
</tbody>
</table>

*: P < 0.05 when compared with preoperative data.
환술시 낮은 수술시방울과 보다 낮은 기능적 결과, 경기생존율의 개선 등을 나타내며 판막-심실의 상호 작용에 의한 좌심실의 기능적 향상을 가져온다고 보고하였다. 본 연구에서 수술후 심초음파에 의한 좌심실 기능의 변화를 살펴 보았는데, 기존 판막물질과 구형적분율은 수술 전 0.55±0.11에서 수술 후 0.47±0.08로 감소하였으며, 단축분율은 수술 전 0.30±0.08에서 수술 후 0.24±0.05로 감소하였다. 

Table 4. EF: p=0.03, FS: p=0.04, 건식보존 판막물질에서는 수술 후 0.52±0.10에서 수술 후 0.52±0.10, 단축분율(Fractional Shortening)은 수술 후 0.29±0.06에서 수술 후 0.27±0.06로 감소하였으며, 좌심실 유출로의 협착이나 인조 판막운동의 장애는 관찰되지 않았으며, 조기 및 만기 사망은 없었다.

건식 제거시 좌심실 용적과 좌심실 벡의 스트레스가 증가하고 막운매수는 감소한다. 이에 반하여 건식보존시 막운매수의 변화 없이 좌심실 용적과 좌심실 벡의 스트레스가 감소함으로서 건식보존 좌심실 기능이 더 수축되고 심장의 확장이 예방하고 좌심실의 불가역적인 손상을 피할 수 있다. Hansen 등은 보고에 의하면 동물실험에 있어서 전심의 전략을 절제 후 압력-용적 관계가 27% 감소하였으며, 후심의 건식 제거시 전략을 증가하는 압력-용적 관계가 16%의 감소를 나타냈다. 반대로, 후건식을 먼저 제거하면 압력-용적 관계가 17%의 감소가 나타나며 전건식 마저 제거하면 추가적으로 압력-용적 관계가 24%의 감소를 보였다. 이것은 곧 전 후 건식 사이에 좌심실 기능과 협조적인 작용을 보이고 있으며, 후건식 보다 전건식의 작용이 보다 중요함을 알 수 있다.

건식보존 판막판 치환술은 전략은 전기 및 후기 전략으로 분리하여 각각 전 후 각행 주위에 제 복막하여 후전의 중심부를 분리하며 최대한의 내장을 확보함으로서 증분한 크기의 인공 기계 판막을 삽입하여 좌심실 유출로의 폐쇄를 막을 수 있고, 또한 기계판막 삽입시 회전성을 가진 판막을 사용하여 판막이 기계적인 운동장을 받지 않는 위치로 하고, 그 경우에도 기계판막 운동장을 잃어가는 판막 부속기는 부분질체를 하여 운동장적 제거함으로써 전건식에 의한 판막의 운동이 장애받지 않도록 한다.

결 론

수만 판막판 치환술 판막과 전략을 보존하여 판막-유두근의 연속성을 유지하는 수술은 수술 후 합병증을 줄이고 좌심실의 기능을 유지 보존(Fig. 1, 2) 하는데 있어 유용한 방법중의 하나로 생각한다.

참고 문헌


=국문초록=

**배경:** 전식보존 승모판 치환술이 승모판막질환에 있어서 좌심실 기능의 보존 및 숭후 합병증을 줄일 수 있다고 알려져 있다. **대상 및 방법:** 1995년 1월부터 1996년 7월까지 전북대학교병원 흉부외과과 교실에서 승모판 치환술시 전식을 진행한 20예(기존치환술)와 전식을 보존한 10예(보존치환술)의 숭 후 단기성적을 비교하였다. 결과: 숭 전 두 그룹간의 성별, 나이, NYHA 기능적 분류, 심혈비 및 심전도 소견, 심초음파 소견 및 관류량, 대동맥 차단시간등의 차이는 없다. 숭 전 심혈비에 대한 숭 후 1개월 심혈비 비교에 있어서 두 그룹 모두 통계적으로 유의한 감소를 보였으나 두 그룹 사이의 통계적 차이는 없었다. 숭 전 심혈비에 대한 숭 후 3개월 심혈비 감소는 두 그룹 모두 통계적인 의미는 없었다. 숭 전 심혈비 소견상 대부분 심방세동이 동반되고 있었으며 심방세동이 숭 후에 동심 리듬으로 변환된 경우가 기존치환술에서 2예 있었다. 심초음과에 의한 좌심실 기능 비교에 있어서 보존치환술은 숭전에비해 구혈분획(Ejection Fraction) 및 단축분획율(Fractional Shortening)의 감소가 심하지 않았으나(p =0.047, p = 0.12), 기존치환술에서는 구혈분획 및 단축분획율의 감소가 통계적으로 유의한 감소를 보였으며(p=0.03, p=0.04), 두 그룹간에 통계적으로 유의한 차이를 보였다(p=0.03, p=0.02). 또한 보존치환술에 비해 기존치환술에서 높은 합병증 발생률을 보였다. 결론: 승모판막 질환에 있어서 전식 보존 승모판막 치환술이 기존 승모판 치환술에 비해 숭 후 좌심실 기능을 보존하는데 효과가 있으며, 낮은 합병증 발생률을 보였다.

**중심단어:** 1. 승모판막 치환술  2. 전식보존