Abstract

Factors Affecting Recurrence after Video-assisted Thoracic Surgery for the Treatment of Spontaneous Pneumothorax

Song Am Lee, M.D.*, Kwang Taik Kim, M.D.*, II Hyoun Kim, M.D.*, Man Jong Baek, M.D.*, Young Ho Choi, M.D.*, Iln Sung Lee, M.D.*, Hyoung Mook Kim, M.D.*, Hark Jei Kim, M.D.*

Background: Recent developments in techniques of video-assisted thoracic surgery (VATS) and endoscopic equipment have expanded the application of video-assisted surgical procedures in the field of thoracic surgery. Especially, it will probably become the treatment of choice of spontaneous pneumothorax (SP). There is, however, a high recurrence rate, high cost, and paucity of long-term results. We report the results of postoperative follow-up and analyze perioperative parameters affected to recurrence, retrospectively. Material and method: From March 1992 to March 1997, 276 patients with spontaneous pneumothorax underwent 292 VATS procedures. Conversion to open thoracotomy was necessitated in eight patients, and those patients excluded from the study. Result: The sex distribution was 249 males and 31 females. The mean age was 28.1 ± 12.2 years (range, 15 to 69 years). Primary SP was 237 cases (83.5%), and secondary SP was 47 cases (16.5%). The major underlying lung diseases associated with secondary SP were tuberculosis 27 cases (57.4%) and emphysema 8 cases (38.3%). Operative indications included ipsilateral recurrence 123 (43.9%), persistent air-leak 53 (18.9%), x-ray visible bleb 40 (14.3%), tension 30 (10.7%), contralateral recurrence 21 (7.5%), uncomplicated first episode 8 (2.9%), bilateral 3 (1.1%), complicated episode 2 (0.7%). Blebs were visualized in 247 cases (87%), and 244 cases (85.9%) performed stapled blebectomy. Early postoperative complications occurred in 33 cases (11.6%): 16 prolonged air-leak more than 5 days (four of them were required a second operation and found missed blebs); 5 bleeding; 5 empyema; 2 atelectasis; 1 wound infection. No deaths occurred. The mean operative time was 52.8 ± 23.1 minutes (range, 20 to 165 minutes). The mean duration of chest tube drainage was 5.0 ± 4.5 days (range, 2 to 37 days). The mean duration of hospital stay was 8.2 ± 5.5 days.

*고려대학교 의과대학 협동의과학과실
Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul.

† 본 논문은 1997년 대한흉부외과학회 제 29차 추계학술대회에서 구연 발표되었음.
‡ 본 논문의 요지는 1998년도 추계 학술대회에서 발표하였습니다.
책임 저자: 김광택, (136-705) 서울 성북구 안양동 5가 126-1번지, 고려대학교 의과대학 협동의과학과실, (Tel) 02-920-5309, (Fax) 02-928-8793
E-mail: ttkim@kaacnx.korea.ac.kr
본 논문의 저작권 및 전자배포는 대한흉부외과학회에 있습니다.

- 448 -
서 론

1910년 Jacobus에 의해 최초로 보고된 흉강증은 그 동안 진단적 목적으로 간간히 사용되어 오다가 1970년 경 Wakahayashi와 Takeno에 의해 치료 목적으로 이용되기 시작하였으나 그 후 별다른 진전은 없었다.

1990년대에 들어 흉강증은 비디오기술과 접목되면서 급속한 발전을 이루었으며 또한 내시경용 자동봉합기(Endo-GIA)의 개발과 기기의 급속한 발달로 인해 개봉술과 폭감은 처치를 할 수 있게 되면서 많은 흉부질환에 환법하게 적용되고 있다. 자연기종에 대해서도 비디오흉강경수술이 적절히 치료로 제시되고 있지만 세심한 주의를 필요로 하고 개봉술에 비해 높은 재발률과 수술 후 재발에 대한 수술방법의 개선 및 장기 추적관찰의 부족함이 문제점으로 보고되고 있는 실정이다.

대상 및 방법

고등 인양병원 흉부외과에서는 비디오흉강경이 병원에 도입된 1992년 3월부터 1997년 3월까지 약 5년간 288례의 자연기종 환자에 대해서 292례의 비디오흉강경수술을 시도하였으며 이중 개봉술로의 진화는 8례이었다. 3례는 겨대 폐기포, 1례는 다발성 폐기포, 4례는 심한 폐유착으로 인해 개봉술을 시행하였다. 이 8례는 조사에서 제외되었다.

시도된 292례중 개봉술로 진화한 8례 중 제외한 284례(4명은 양측을 수술하였다. 2명은 양측성 기종으로, 2명은 단순 흉부활영상 반대편에 폐기포가 관찰되어 양측을 수술하였다)에 대해 외래 방문시 진찰과 의무기록 검토 및 진화통화를 통해 수술 후 결과 및 추적관찰의 결과와 재발에 관여하는 인자를 전향적으로 분석하였다. 12개의 수술기 주변 요인, 인지(나이, 성별, 기종의 위치, 기종의 정도, 원인질환 유무, 수술 적응증, 폐기포의 수, 폐기포의 크기, 폐기포의 위치, 폐기포유출 유무, 흉막유착술 방법, 숭후 지속성 공기누출 유무)가 재발에 관여하는 지에 대해 분석하였다. 통계적 분석은 먼저 단수 분석(Univariate analysis)을 적절히 시행하였으며(Student's t-test, Fisher's exact test & Chi-square test), 재발에 영향을 미치는 위험요인 분석은 다변량 분석법의 단계적 선형회귀분석(Step wise linear regression analysis)을 시행하였다. 무해발 누적율은 카플란-메이어법(Kaplan-Meier method)을 이용하여 구하였다.

결 과

환자의 연령분포는 15세에서 69세까지 평균 28.1±12.2세

Table 1. Underlying disease.

<table>
<thead>
<tr>
<th>Underlying disease</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary SP*</td>
<td>237 (83.5%)</td>
</tr>
<tr>
<td>Secondary SP</td>
<td>47 (16.5%)</td>
</tr>
<tr>
<td>Tbc</td>
<td>27 (9.5%)</td>
</tr>
<tr>
<td>Tbc + COPD</td>
<td>10 (3.5%)</td>
</tr>
<tr>
<td>COPD</td>
<td>8 (2.8%)</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Chronic Obstructive Pulmonary Disease (COPD)</td>
<td>1 (0.4%)</td>
</tr>
</tbody>
</table>

SP: Spontaneous pneumothorax, Tbc: Tuberculosis, COPD: Chronic Obstructive Pulmonary Disease.

Table 2. Operative indication.

<table>
<thead>
<tr>
<th>Operative indications</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent ipsilateral</td>
<td>123 (43.9%)</td>
</tr>
<tr>
<td>Persistent air-leak (>5days)</td>
<td>53 (18.9%)</td>
</tr>
<tr>
<td>X-ray visible blebs</td>
<td>40 (14.3%)</td>
</tr>
<tr>
<td>Tension</td>
<td>30 (10.7%)</td>
</tr>
<tr>
<td>Recurrent contralateral</td>
<td>21 (7.5%)</td>
</tr>
<tr>
<td>Uncomplicated first episodes</td>
<td>8 (2.9%)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>3 (1.1%)</td>
</tr>
<tr>
<td>Complicated (Hemothorax)</td>
<td>2 (0.7%)</td>
</tr>
</tbody>
</table>

Table 3. Operative finding.

<table>
<thead>
<tr>
<th>Operative finding</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of blebs</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>37 (13.0%)</td>
</tr>
<tr>
<td>One</td>
<td>72 (25.4%)</td>
</tr>
<tr>
<td>Multiple</td>
<td>175 (61.6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size of blebs</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>37 (13.0%)</td>
</tr>
<tr>
<td>Small (<2cm)</td>
<td>150 (52.8%)</td>
</tr>
<tr>
<td>Large (≥2cm)</td>
<td>97 (34.2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location of blebs</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>37 (13.0%)</td>
</tr>
<tr>
<td>Upper lobe</td>
<td>213 (75.0%)</td>
</tr>
<tr>
<td>Lower lobe</td>
<td>6 (2.1%)</td>
</tr>
<tr>
<td>Multiple sites</td>
<td>28 (9.9%)</td>
</tr>
</tbody>
</table>

Table 4. Operative procedure.

<table>
<thead>
<tr>
<th>Bleb Management</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>40 (14.1%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pleural Procedure</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical abrasion</td>
<td>117 (41.2%)</td>
</tr>
<tr>
<td>Pleurectomy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical Pleurodesis</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>24 (8.5%)</td>
</tr>
</tbody>
</table>

(1Tetracyclin)이나 50% D/W가 사용되었다(Table 4). 평균 수술 시간은 52.8±23.1분(20~165분)이었다. 평균 증후가 지속기간은 5.0±4.5일(2~37일)이었으며, 평균 입원일은 8.2±5.5일(3~43일)이었다(Table 5).

술 후 항생증으로 5일 이상 증상이 16예가 있었고, 10례는 안정적, 1례는 추가 세포적 증상이 있었으며, 4례에서는 항생제의 사용이 필요하였다. 2례는 비비오티생을 사용한 경우, 2례는 개방성 시술을 시행하고 4례는 모두에서 항생제가 사용하였다(4예, 100%). 출혈이 5례 있었으며, 이중 3례에서 흉막내가 필요하였다. 1례는 비비오티생으로, 2례는 개방적으로 권장되었다. 2례는 4례가 개방적 백내장(open drain)을 하고 되원하였다. 그 외 항생증으로 2례가 증상이 1례 있었으며, 손 후 상승은 없었다(Table 6). 후음해는 요인중 2례의 항생제 사용은 허용되었다(33/284).

평균 22.3±18.4개월(1~65개월) 및 수환간 동안은 12례가 증상이 있었으며, 10례(83.3%)에서 증상이 나타났기도 하였다(12/284, 4.2%). 총 2례(8.5%)가 재발하였으나, 1례는 이내에 재발이 92.9%였다(Table 7). 무게당 누적율도는 Fig. 1에 나타내었다. 재발된 기종의 5례는 폐쇄식 증상판

--- 450 ---
Table 5. Operative results.

<table>
<thead>
<tr>
<th>Operative Time</th>
<th>Mean 52.8 ± 23.1 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Range 20~165 min)</td>
<td></td>
</tr>
<tr>
<td>Duration of drain</td>
<td>Mean 5.0 ± 4.5 days</td>
</tr>
<tr>
<td>(Range 2~37 days)</td>
<td></td>
</tr>
<tr>
<td>Hospital Stay</td>
<td>Mean 8.2 ± 5.5 days</td>
</tr>
<tr>
<td>(Range 3~43 days)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Postoperative Complication.

<table>
<thead>
<tr>
<th>Early Complication</th>
<th>33 / 284 (11.6%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent air leak</td>
<td>16 (48.5%)</td>
</tr>
<tr>
<td>Empyema</td>
<td>5 (15.2%)</td>
</tr>
<tr>
<td>Bleeding</td>
<td>5 (15.2%)</td>
</tr>
<tr>
<td>Air entance</td>
<td>4 (12.1%)</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>2 (6.1%)</td>
</tr>
<tr>
<td>Wound infection</td>
<td>1 (3.0%)</td>
</tr>
</tbody>
</table>

Table 7. The onset of recurrence after the VATS

<table>
<thead>
<tr>
<th>Time interval</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>within 1 month</td>
<td>8 (33.3%)</td>
</tr>
<tr>
<td>1 to 2 month</td>
<td>6 (25.0%)</td>
</tr>
<tr>
<td>2 to 6 month</td>
<td>3 (12.5%)</td>
</tr>
<tr>
<td>6 to 12 month</td>
<td>5 (20.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>24 (100%)</td>
</tr>
</tbody>
</table>

VATS: Video-Aroisted Thoracosopic Surgery

슬증, 8례는 화학적 흉막유착술(Picibanil 6례, Vibramycin 2례), 1례는 흉실전자를 하였으며 3례는 안정가로 치료하였 다. 7례의 경우 재수술이 필요하였으며(3례는 개흡수, 4례는 비디오흡강경수술), 6례에서 극기포가 발견되었다(85.7%, 67) (Table 8).

12가지 수술기 주변 인자가 재발에 관여하는 지에 대해 분석하였다. 원인 질환, 흉막유착 병변과 숭후 지속성 공기 누출 유무가 재발에 관여하는 위험요인으로 나타났다. 이차 성 자연기증이 원성화 자연기증보다 재발율이 높았고(17.0% (8/47) : 6.8%(16/237), p=0.038), 숭후 지속성 공기누출이 있었던 경우 재발율이 높았으며(37.5%(6/16) : 6.7%(18/268), p=0.001). 기계적 흉막유착술이 흉막절체술보다 재발율이 높았다(11.4%(19/167) : 4.3%(5/117), p=0.034). 폐기로절제술을 시행한 경우가 향상한 경우보다 재발율이 낮았으나, 통계학 적 의의는 없었으며(8.2%(20/244), 10.0%(4/40) : p>0.05). 화학 적 흉막유착을 한 경우가 안한 경우보다 재발율이 낮았으

Table 8. Treatment for recurrence

<table>
<thead>
<tr>
<th>Method</th>
<th>No of case (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoracotomy(Mid-axillary)</td>
<td>3 (12.5%)</td>
</tr>
<tr>
<td>VATS</td>
<td>4 (16.7%)</td>
</tr>
<tr>
<td>CT</td>
<td>5 (20.8%)</td>
</tr>
<tr>
<td>CT + Pleurodesis</td>
<td>8 (33.3%)</td>
</tr>
<tr>
<td>Thoracentesis</td>
<td>1 (4.2%)</td>
</tr>
<tr>
<td>Observation</td>
<td>3 (12.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>24 (100%)</td>
</tr>
</tbody>
</table>

*CT, Closed thoracostomy,
VATS, Video-Aroisted Thoracosopic Surgery

Table 9. Predictors for recurrence.

<table>
<thead>
<tr>
<th>Underlying disease</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>16/237 (6.8%)</td>
</tr>
<tr>
<td>Secondary</td>
<td>8/47 (17.0%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prolonged air-leakage</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>6/16 (37.5%)</td>
</tr>
<tr>
<td>No</td>
<td>18/268 (6.7%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pleural procedure</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical abrasion</td>
<td>19/167 (11.4%)</td>
</tr>
<tr>
<td>Pleurectomy</td>
<td>5/117 (4.3%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical Pleurodesis</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>3/24 (12.5%)</td>
</tr>
</tbody>
</table>

Table 9. predictors for recurrence.

<table>
<thead>
<tr>
<th>Underlying disease</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>16/237 (6.8%)</td>
</tr>
<tr>
<td>Secondary</td>
<td>8/47 (17.0%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prolonged air-leakage</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>6/16 (37.5%)</td>
</tr>
<tr>
<td>No</td>
<td>18/268 (6.7%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pleural procedure</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical abrasion</td>
<td>19/167 (11.4%)</td>
</tr>
<tr>
<td>Pleurectomy</td>
<td>5/117 (4.3%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical Pleurodesis</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>3/24 (12.5%)</td>
</tr>
</tbody>
</table>

고찰

자연기증의 치료목적은 허탈감의 재발방, 폐기능의 회복
기후에 대한 비디오항성수술은 비디오기술의 발전으로 인해 시야가 좋아지자고 내시경용 자동합병기의 개발로 개봉
과 같은 처리를 함에도 불구하고 재방문이 개봉시에 비해
높은 것으로 보고되고 있는 실정이다. Elsdon 등(7) 항양
수술중의 경우 54%(7/13)의 재방문을 보였고, 개봉수술의
경 우 재방문이 없었다고 보고하였으며, Cole 등(8) 항양수술
군의 경우 3례(10%), 개봉수술의 1례(3%)의 재방문이 있었다고
보고하였고, Olsen 등(9) 항양수술 중의 경우 61례(16%), 개
봉수술의 4례(14%)의 재방문이 있었다고 보고하였다. Waller 등은
(10) 항양수술 중의 경우 2례(2/30, 6.7%), 개봉수술의 경우 1례
(1/30, 3.3%)의 재방문이 있었고 보고하였다. 경영성 등(11)
항양수술 중의 경우 5례(3.9%), 개봉수술 1례(0.9%)를 보고하였다.
그러나 이러한 보고는 장기 추적결과가 미흡하다는 문제점
임이 있다. 최근 중장기 추적결과에 대한 국의 논문이 보고
되고 있으며(Table 10)에 정리하였다. 페기를 항약에 대한
처차가 다르게 사용되었으나 하루 어출도 재방문이 3
에서 8%까지 보고되고 있어 개봉수술에 비해 덜한 다소
게 보고되고 있다. 본문의 경우 재방문이 8.5%(24/30)로 비
교적 높게 나타났으며, 이것은 시험 초기 경험부족이 원인일
수 있으나 다른 원인을 찾아볼 것으로 보고 비디오항성수
술시 어떤 수술기 주변인자(Perioperative factors)가 재방문
와 관련하는지 알아보기 위해 위험분석(risk analysis)을 하였으
며 이를 재방문을 줄여서 이용하게 하였다. 재방의 위험인자
로서는 기술의 원인절환의 유무, 습후 지속적 항양수술과 항
약수술 방법으로 나뉘는데 이차성 기술은 원발성 기술
과 비교하여 비디오항성수술 후 재방문이 높았다. Cannon 등은(12)
이차성 기술의 경우 33.3%(5/6), 원발성 기술의 경우
11.1%(1/9)의 재방문을 보고하였으며, 이차성 기술은 비디오
항성 수술시 더 세심한 주의가 필요하다고 하였다. 습후
지속적 항양수술이 있었던 경우 재방문이 높았으며 이로 인
한 재방문율은 25%(4/16)였다. 따라서 습후 항양수술이 지속
되며 화학적 항양수술이나 재방문등 적극적 치료가 필요
할때 사라진다. 항약수술 중에는 항양점착기술이 기계적
항양수술보다 재방문이 낮았다. 그러나 항양점착기술은 기계
적 항양수술보다 다소 효과적이며 수술시간도 짧고
유방은 덜 신진한 선택이 필요하며 본문에서는 페기로
가 보이지 않는 경우 사라지고 있다. 또한 재방의 원인으로
서 비디오 항성 수술을 찾기 못한 페기로(missed bleeds)가
원인으로 보는 것도 있다(30). 본문에서는 항양점착에 페기로
가 확인된 경우는 87%(247/284)였으며 이는 Naunheim 등의(34)
62%보다, Yim 등의(33) 87%와 비교하여 비슷하였다. 본문에서
페기로점착술을 244례에서 시행하였으며, 이 경우 페기로점
착술을 시행하지 않은 경우보다 재방문이 낮았다(8.2% : 10.0%). 이는 통계상 유의하지 않았으나 본문의 경우 습후
<table>
<thead>
<tr>
<th>Author</th>
<th>Indication</th>
<th>Bleb management Plural procedure</th>
<th>Results</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inderbitzi RG et al (1994)</td>
<td>First episode(21)</td>
<td>A. Loop (26)</td>
<td>Median hosp stay:</td>
<td>Mean follow-up:</td>
</tr>
<tr>
<td>Jun.1990-Jun.1993</td>
<td>Recurrent(36)</td>
<td>B. Stapler (14)</td>
<td>4.2D (1-20D)</td>
<td>19.6M (3-36M)</td>
</tr>
<tr>
<td>79pt(79proc)</td>
<td>Air-leak[>7(22)</td>
<td>Pleurectomy(16)</td>
<td>Cx: 4.5(1.2%)</td>
<td>Recur: 8.3(6/72)</td>
</tr>
<tr>
<td>Ellefdt RJ et al (1994)</td>
<td>First episode(22)</td>
<td>Pleurectomy + A or B(18)</td>
<td>Mean follow-up:</td>
<td>Mean follow-up:</td>
</tr>
<tr>
<td>52pt(54proc)</td>
<td>X-ray bile(7)</td>
<td>Cx: 2</td>
<td>Mean follow-up:</td>
<td>Mean follow-up:</td>
</tr>
<tr>
<td>Yım APC et al (1995)</td>
<td>First episode(24)</td>
<td>Stapler* (69) + MPA**</td>
<td>Median hosp stay:</td>
<td>Mean follow-up:</td>
</tr>
<tr>
<td>97pt (100 proc)</td>
<td>Air-leak[>3(40)</td>
<td>Argon beam (6) + MPA</td>
<td>Cx#: 8(8%)</td>
<td>Recur: 3(3/100)</td>
</tr>
<tr>
<td></td>
<td>Tension(6)</td>
<td>Endo-suture(7) + MPA</td>
<td>MPY only(13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bilateral(3)</td>
<td>Freq travallr(27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naunheim KS et al (1995)</td>
<td>First episode(3)</td>
<td>Stapler(113)</td>
<td>Median hosp stay:</td>
<td>Mean follow-up:</td>
</tr>
<tr>
<td>Feb.1991-Dec.1993</td>
<td>Recurrent(77)</td>
<td>Loop(1)</td>
<td>3D (1-30D)</td>
<td>31.1M (1-34M)</td>
</tr>
<tr>
<td>113pt(121proc)</td>
<td>Air-leak(24)</td>
<td>Cautery(1)</td>
<td>Cx: 10(8%)</td>
<td>Recur: 4.1(5/121)</td>
</tr>
<tr>
<td></td>
<td>Contralateral(12)</td>
<td>Laser(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemothorax(2)</td>
<td>Pleurectomy(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freq travaller(27)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bertrand PC et al (1996)</td>
<td>Recurrent(70)</td>
<td>Stapler + MPA</td>
<td>Median hosp stay:</td>
<td>Mean follow-up:</td>
</tr>
<tr>
<td>Nov.1991-Dec.1994</td>
<td>Air-leak[>7(64)</td>
<td>6.9 ± 3.0D (5-28D)</td>
<td>24.5M (5-42M)</td>
<td>Recur: 3.6(6/163)</td>
</tr>
<tr>
<td>163Pt</td>
<td>Contralateral(24)</td>
<td>Cx: 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bilateral(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freixinet J et al (1996)</td>
<td>Recurrent(108)</td>
<td>Stapler + MPA</td>
<td>Median hosp stay:</td>
<td>Mean follow-up:</td>
</tr>
<tr>
<td>132pt</td>
<td></td>
<td>Cx: 8(6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouroux J et al (1996)</td>
<td>Recurrent(53)</td>
<td>Stapler +</td>
<td>Median hosp stay:</td>
<td>Mean follow-up:</td>
</tr>
<tr>
<td>May.1991-Nov.1994</td>
<td>Air-leak[>7(18)</td>
<td>Electrocoagulation(3)</td>
<td>8.25D (3.2D)</td>
<td>30M (7-49M)</td>
</tr>
<tr>
<td>97pt(100proc)</td>
<td>Contralateral(18)</td>
<td>Patch pleurectomy(3)</td>
<td>Cx: 10</td>
<td>Recur: 0.3(3)</td>
</tr>
<tr>
<td></td>
<td>Bilateral(3)</td>
<td>Subtotal pleurectomy(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional(3)</td>
<td>MPA(74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemothorax(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stapler* ; Stapled resection, MPA** ; Mechanical pleural abrasion, Cx# ; Complication, D ; Day, M ; Month, VATS ; Video-Aroisted Thoracoscopic Surgery

지속적 공기누출로 제수술한 경우 100%(4/4) 재발로 제수술한 경우 85.7%(6/7)에서 처 첫 수술층 짚시 못했던 폐기포를 찾을 수 있었다. 따라서, 수술층 폐기포가 보이지 않은 경우는 재발을 줄이기 위해 흡착질제술과 더불어 화학적유착술을 시행하는 것을 고려해 볼 적이다.
대부분의 흉부외과 의사가 선호하고 있으나 장기 추적 관찰이 아직은 미흡하다고 보며, 높은 재발률이 문제가 되고 있는 만큼 더 많은 연구조사와 개선이 필요하다고 본다.

결론

고려대학교 산암병원 흉부외과에서는 비디오탕경이 병원에 도입된 1992년 3월부터 시작하여 1997년 3월까지 자연기종 환자 280명 284례에 대해 비디오탕경수술을 시행한 결과 22.3±8.4개월(1~65개월)의 추적조사한 결과 다음과 같은 결론을 얻었다.

1) 수술 후 재발율은 8.5%(24례)였으며 재발의 92%가 1년 이내에 발생하였다.
2) 비디오탕경수술 후 재발에 관여하는 위험요인을 분석한 결과 환인성질 유무, 숭부 지속적 공기누출 유무 및 흉막유착이 방법이 의미있는 위험요인이다.
3) 첫 수술중 찾아 못했던 페기포(missed blebs)가 또 다른 재발의 원인이 며, 숭부 지속적 공기누출가 재수술한 경우 100%(4/4), 재발로 재수술한 경우 85.7%(6/7)에서 경험하였다.

이상의 결과로 비디오탕경술에서 재발을 낮추기 위해 수술시 폐안 전체를 관찰하여 존재하는 페기포를 놓치지 않는 것이 중요하며, 페기포가 없는 경우와 이상성 자연기종에 대해서는 흉막유착술에 더 세심한 주의가 필요하다는 것을 확인하였다. 숭부 지속적 공기누출이 있는 경우 재발율이 높은 만큼 최적의 흉막유착술을 적극적인 치료가 필요하다. 비디오탕경수술은 대부분의 보고서에 나타나듯이 여러 장점, 즉 동물 적절, 입원기간 짧고, 사회주의 복귀가 빠르며, 고위험군에 적용할 수 있고, 미용상의 이점이 크다는 점에서 자연기종에 대해 유용한 치료방법이나 재발술에 비해 재발율이 높고 비용이 비싸다는 문제가 제기되고 있는 만큼 더 많은 장기 추적관찰과 개선이 필요하다고 사료된다.

참고 문헌

=국문초록=

매개: 비디오흡경수술은 최근 기기의 급속한 발달로 인해 많은 홍부 질환에 적용되고 있으며, 자연기종에 대한 적절한 치료법으로 제시되고 있지만 개복술에 비해 높은 재발률이 문제점으로 기존되고 있으며, 수술 후 재발에 대한 장기 추적관찰이 필요한 실정이다. 대상 및 방법: 고대 안암병원 홍부외과에서는 비디오흡 경수술이 도입된 1992년 3월부터 1997년 3월까지 288명의 자연기종 환자에서 292례의 비디오흡경수술 을 시행하였다. 수술 후 추적 관찰한 결과와 재발에 관여하는 인자를 탐구하고 분석하였다. 개복술로의 전환 8례는 제외하였다. 결과: 남자 249명(88.9%), 여자 31명(11.1%)이었으며, 나이는 평균 28.1±12.2세(15~69세)였다. 원발성 자연기종이 237명(83.5%), 이차성 자연기종이 47명(16.5%)이었으며 이차성 자연기종 중에서 는 경화성이 27명(57.5%)으로 가장 많았다. 수술 적응증으로는 동측 재발성 기종이 123명(43.9%)과 지속적 공기누출 53명(18.9%)으로 대부분을 차지하였으며, 그 외 흉부혈관예방 장기교감원 경우 재발한 경우 40명(14.3%), 경화성 기종 30명(10.7%), 반대측 기종 21명(7.5%), 양측성 기종 3명(1.1%), 혈방중이 동반된 경우 2명(0.7%), 그리고 환자나 보호자가 원한 경우가 8명(2.9%)이었다. 홍경수술시 폐기구가 관찰된 경우 247례(87%)였다. 244례(85.9%)에서 폐기구제거술이 시행되었다. 평균 수술시간은 52.8±23.1분(20~165분)이었다. 수술 후 4개월으 로 5일 이상 공기누출이 16례였으며, 이중 4례에서 재수술이 필요하였으며 전례에서 경피적 폐기구가 다시 발생되었다(100%, 4/4). 출혈이 5례 있었으며 이중 3례에서 재수술이 필요하였다. 그 외 무기폐 2례, 농호 5례, 상상염 1례가 발생하였으며 술 후 사망례는 없었다. 평균 홍관기시기간은 5.0±4.5일(2~37일), 평균 입원일은 8.2±5.5일(3~43일)이었다. 평균 22.3±18.4개월(1~65개월)의 추적 관찰기간 동안 12례가 누락되었으며(4.2%), 24례(8.5%)가 재발하였다. 이중 7명의 경우 재수술이 필요하였으며 6례에서 폐기구가 제거되었다(43.7%, 6/14). 12개의 요인과 기종의 위치, 기종의 정도, 원인질환, 수술 적응증, 패험의 수, 폐기구의 크기, 폐기구의 위치, 폐기구제거 유무, 흉막유착결병 방법, 숭후 지속성 공기누출 유무)가 재발에 관여하는 지에 대해 분석하였다. 원인질환 유무, 흉막유착결병 방법과 숭후 지속성 공기누출 유무가 재발에 관여하는 위험요인으로 나타났다. 이차성의 경우 원발성의 경우보다 재발률이 높았고[17.0%(8/47) : 6.8%(16/237), p=0.038], 숭후 지속성 공기누출이 있었던 재발율이 높았으며[37.5%(6/16) : 6.7%(8/128)], p=0.001]. 기계적 흉막유착결병은 흉막유착결병보다 재발률이 높았다(11.4%(19/167) : 4.3%(5/117), p=0.034). 폐기 포질제거술을 시행한 경우가 하지 않은 경우보다 재발률이 낮았으나 통계학적 의의는 없었다(10.0%(4/40) : 8.2%(20/244), p=0.05). 결과: 비디오흡경수술에서 재발을 낮추기 위해 수술시 패험 전체를 관찰하여 존재하 는 패포를 놓치지 않는 것이 중요하며, 패포를 확인하지 못한 경우와 이차성 자연기종의 경우는 동측락 유착결병이 더 세심한 주의가 필요하다고 확인하였다. 비디오흡경수술은 동측이 적고, 입원기간이 짧 고, 사회적 복귀가 빠르며, 고위험군에 적용할 수 있고, 무엇보다도 미용상의 이점이 크다는 면에서 자연 기종에 대해 유효한 치료방법임에는 틀림이 없으나 개복술에 비해 재발률이 높고 비용이 비싸다는 문제가 제기되고 있는 만큼 더 세심한 주의와 장기 추적관찰이 필요하다고 사료된다.