Hot-wall epitaxial growth and characterization of $Cd_{1-x}Mn_xTe$ films

Hot-wall epitaxy 법에 의한 $Cd_{1-x}Mn_xTe$ 박막의 성장과 특성

  • Published : 1999.02.01

Abstract

$Cd_{1-x}Mn_xTe$ thin films were grown on GaTs (100) substrates by hot-wall epitaxy method. From the XRD measurements, it was found that CdTe/GaAs (100)film was grown as a single crystal with the same growth plane of (100) and $Cd_{1-x}Mn_xTe$film as a poly crystal as Mn content was increased, and the lattice constant was decressed with the similar gradient of bulk crystal as x was increased. From the PL measurements, $L_1$line due to the exciton trapped on an acceptor and $L_2$line due to an exciton trapped on a shallow potential fluctuation were observed, and $L_1$line was observed only in $Cd_{0.91}Mn_{0.09}$te but it was disappeared probably due to a stronger lacalization of excitons with increasing alloy fluctuation.$L_2$line was dominant in case of $x{\ge}0.2$and for higher Mn contents the broad transition about 2.0eV associated to the 3d levels of the $Mn^{2+}$ ion dominated the PL spectrum, and the $L_2$ transition become weaker and weaker. For$x{\ge}0.4$, the transition line about 2.0eV due to $Mn^{2+}$ion showed no shift.

Hot-wall epitaxy법으로 $Cd_{1-x}Mn_xTe$박막을 GaAs (100) 기판위에 성장시켰다. XRD 측정으로부터 CdTe/GaAs(100) 박막은 기판과 같은 (100)면의 단결정 박막으로, $Cd_{1-x}Mn_xTe$박막은 Mn의 조성비 x가 증가함에따라 다결정 박막으로 성장되었으며, 박막의 격자상수는 x의 증가에 따라 덩어리 결정의 경우와 비슷한 기울기로 감소함을 확인하였다. x의 변화에 대한 $Cd_{1-x}Mn_xTe$ 박막의 PL 측정으로부터 받개와 퍼텐셜 요동에 의하여 포획된 엑시톤의 재결합 피크인 $L_1$$L_2$를 관측하였으며, $L_1$피크는 x=0.09 시료에서만 관측되었고 x값이 증가하면 사라졌다. x $\ge$0.2의 경우에는 $L_2$피크가 강하게 나타나고 x$\ge$ 0.4에서는 $Mn^{2+}$이온의 intra 천이에 의한 2.0eV 근처의 피크가 강하게 나타났다. x>0.4에서 $Mn^{2+}$이온에 의한 2.0eV 피크는 pinning이 일어나 변화가 거의 없이 일정하였다.

Keywords

References

  1. J. Appl. Phys. v.53 J.K. Furdyna
  2. Semiconductors and Semimetals v.25 J.K. Furdyna
  3. Diluted Magnetic Semiconductors M. Jain
  4. Phys. Stat. Sol.(b) v.146 O. Geode;W. Heimbrodt
  5. Semicon. Sci. Tech. v.5 B. Lunn;J.J. Davies
  6. J. Vac. Sci. Tech. v.A6 R.L. Harper;S. Hwang;N.C. Giles;R.N. Bickell;J.F. Schetzina;Y.R. Lee;A.K. Ramdas
  7. Appl. Phys. Lett. v.44 L.A. Kolodziejski;T. Sakamoto;R.L. Gunshor;S. Datta
  8. Appl. Phys. Lett. v.45 M. Pessa;O. Jylha
  9. J. Cryst. Growth v.86 R. Korenstein;B. MacLEOD
  10. J. Appl. Phys. v.75 no.6 W.J. Keeler;D.A. Harrison;J.J. Dubowski
  11. J. K. A. Cryst, Growth v.6 no.2 Y.K. Chung;HD. Shin;Y.H. Um;H.Y. Park;G.S. Jeen
  12. J. Phys. v.C16 A. Golnik;J. Ginter;J.A. Gaj
  13. J. Appl. Phys. v.77 no.3 C. Bodin;J. Cibert;W. Grieshaber;Le Si Dang;F. Marcenat;A. Wasiela
  14. Phys. Rev. v.B38 M. Bugajski;P. Becla;P.A. Wolff;D. Heiman
  15. Phys. Rev. v.B51 S. Takeyama;S. Adachi;Y. Takagi
  16. Phys. Stat. Sol. v.A69 B.S. Sundersheshu;T. Kendelewicz
  17. Phys. Stat. Sol(b) v.113 E. Muller;W. Gebhardt;V. Gerhardt
  18. 응용물리 v.8 박효열;진광수;유병길;주정진;윤수인;엄영호