An analysis of the porous silicon microstructure by using fractal dimension

쪽거리 차원을 통한 다공질규소의 미세구조 분석

  • Published : 1999.06.01

Abstract

Porous silicon layers were fabricated with various conditions of HF concentration and current density. And their masses were measured. From these data, the porosity and fractal dimension were estimated and analyzed. We found that the porosity was proportional to the current density when the anodic reaction time was fixed and the constant values of fractal dimension could be estimated from a series of data with fixed HF concentration. The values of fractal dimension were decreased with increasing HF concentration. The obtained porosity and fractal dimension were compared with the 2-dimensional computer simulation based on diffusion limited deposition model. According to the simulation, the porosity was proportional to the diffusion length and the fractal dimension was inversely proportional to the diffusion length. Since, the diffusion length is proportional to current density and inversely proportional to base concentration, our experimental data qualitatively agreed with the results from the simulation. The porosity obtained by experiments, however, was not consistent with the results by simulation.

p형 단결정 규소 웨이퍼를 불화수소 용액속에서 전류밀도와 양극반응 시간을 변화시켜 다공질규소를 제작하고, 그 질량을 측정한 후 이 값으로부터 다공도와 쪽거리(fractal) 차원을 계산하였다. 그 결과 양극반응 시간이 일정한 경우 다공도는 전류밀도에 비례하였다. 그리고 전류밀도가 일정한 경우 여러 양극반응 시간의 데이터로부터 얻은 쪽거리 차원은 일정하였다. 또한 쪽거리 차원은 불화수소의 농도 증가에 따라 감소하였다. 이같은 실험결과를 퍼짐한계침전(diffusion limited depostion) 모형으로 계산된 2차원 컴퓨터 시늉내기(simulation) 결과와 비교 분석하였다. 시늉내기 결과 다공도는 퍼짐거리에 비례하였으며, 쪽거리 차원은 퍼짐거리와 반비례하였다. 이때 퍼짐거리는 전류밀도에 비례하고 불화수소의 농도에 반비례하는 물리량이므로 정성적으로 실험결과와 일치하였다. 그러나 쪽거리 차원이 증가함에 따라 다공도가 감소되는 결과는 실험결과와 상반되었다.

Keywords

References

  1. Appl. Phys. Lett. v.57 L.T. Canham
  2. J. Appl. Phys. v.R1 R.L. Smith;S.D. Collins
  3. J. Electrochem. Soc. v.139 P.C. Searson;K.M. Macauley;S.M. Prokes
  4. J. Electrochem. Soc. v.135 V. Lehman;H. Foll
  5. Appl. Phys. Lett. v.46 M.I.J. Beale;J.D. Benjamin;M.J. Uren;N.G. Chew;A.G. Cullis
  6. 表面科學 v.14 嶋田壽一;中川淸和;西田彰男
  7. J. Cryst. Crowth v.73 M.I.J. Beale;J.D. Benjamin;M.J. Uren;N.G. Chew;A.G. Cullis
  8. J. Electronic Meterial v.17 R.L. Smith;S.F. Chung;S.D. Collins
  9. Appl. Phys. Lett. v.58 V. Lehman;U. Gosele
  10. J. Electrochem. Soc. v.142 no.2 St. Frohnhoff;M. Marso;M.G. Berger;M. Thonisson;H. Luth;H. Munder
  11. Phys. Rev. A v.39 R.L. Smith;S.D. Collins
  12. Appl. Phys. Lett v.55 S.F. Chung;S.D. Collins;R.L. Smith
  13. Phys. Rev. Lett. v.71 no.20 J. Erlebacher;P.C. Searson;K. Sieradzki
  14. Phys. Rev. v.A26 P. Meakin
  15. Phys. Rev. Lett. v.53 Z. Racz;T. Vicsk
  16. Jpn. J. Appl. Phys. v.30 H. Koyama;M. Araki;Y. Yamamoto;N. Koshida
  17. Porous Silicon Scie. and Tech. A. Halimaoui
  18. Solid State Comm. v.84 F. Ferrieu;A. Halimaoui;D. Bensahel
  19. Thin Solid Films v.297 S. Lazarouk;P. Jaguiro;S. Katsouba;G. Maiello;S. La Monica;G. Masini;E. Proverbio;A. Ferrari
  20. Phys. Rev. Lett. v.47 T.A. Witten;L.M. Sander
  21. J. Phys. A: Math. Gen. v.24 A. Block;W. von Bloh;Schellnhuber
  22. 자연과학연구 v.6 김영유;홍사용
  23. Fractal Growth Phenomena T. Vicsek