The formation mechanism of grown-in defects in CZ silicon crystals based on thermal gradients measured by thermocouples near growth interfaces

  • Abe, Takao (Shin-Etsu Handotai, Isobe R&D Center)
  • Published : 1999.08.01

Abstract

The thermal distributions near the growth interface of 150nm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10nm from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it is confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient(G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective length of the thermal gradient for defect generation are varied, we defined the effective length as 10n,\m from th interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitials. The experimental results after detaching FZ and CZ crystals from the melt show that growth interfaces are filled with vacancies. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitials are necessary. Such interstitials recombine with vacancies which were generated at the growth interface, nest occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by te distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melts, respectively.

Keywords

References

  1. MRS Symp. v.469 Defects and Diffusion in Silicon Processing G. Watkins;T. Diza(ed.);de la Rubia(ed.);S. Coffa(ed.);P.A. Stalk(ed.);C.S. Rafferty(ed.)
  2. Mat. Res. Soc. Symp. Proc. v.527 H. Bracht;E.E. Haller;K. Eberl;M. Cardona;R. Clark-Phelps
  3. Trans. AIME v.233 T.S. Plaskett
  4. Appl. Phys. Lett. v.16 A.J.R. de Kock
  5. Jpn. J. Appl. Phys. v.5 T. Abe;T. Samizo;S. Maruyama
  6. Appl. Phys. v.8 H. Foell;B.O. Kolbesen
  7. Semiconductor Silicon 1977 H. Foell;U. Goesele;B.O. Kolbesen;H.R. Huff(ed.);E. Sirtl(ed.)
  8. J. Cryst. Growth v.30 P.M. Petroff;A.J.R. de Kock
  9. Phys. Rev. B v.17 J.A. Van Vechten
  10. Jpn. J. Appl. Phys. v.18 no.SUP.18-1 J. Chikawa;S. Shirai
  11. Semiconductor Silicon 1977 E. Sirtl;H.R. Huff(ed.);E. Sirtl(ed.)
  12. J. Vacuum Sci. & Technol. v.14 S.M. Hu
  13. J. Cryst. Growth v.49 A.J.R. de Kock;W.M. Van de Wijgert
  14. J. Cryst. Growth v.53 P.J. Roksnoer;M.M.B. Van Den Moom
  15. J. Cryst. Growth v.59 V.V. Voronkov
  16. J. Appl. Phys. A v.37 T.Y. Tan;U. Goesele
  17. Jpn. J. Appl. Phys. v.29 J. Ryuta;E. Morita;T. Tanaka;Y. Shimanuki
  18. J. Appl. Phys. v.78 M. Itsumi;H. Akiya;T. Ueki
  19. J. Electrochem. Soc. v.139 E. Wijaranakula
  20. Jpn. J. Appl. Phys. v.32 R. Habu;I. Yunoke;T. Saito;A. Tomiura
  21. J. Cryst. Growth v.137 R.A. Brown;d. Maroudas;T. Sinno
  22. J. Appl. Phys. v.33 W.W. Webb
  23. J. Cryst. Growth v.151 no.3;4 W.V. Ammon;E. Dornberger;H. Oelkrug;H. Weidner
  24. Materials Science Forum v.196-201 M. Hourai;E. Kajita;T. Nagashima;H. Fujiwara;S. Ueno;S. Sadamitsu;S. Miki;T. Shigematsu
  25. Int. J. Heat Mass Transfer v.33 F. Dupret;P. Nicodeme;Y. Ryckmans;P. Wouters;M.J. Crochet
  26. Physica v.116B T. Abe;H. Harada;J. Chikawa
  27. Solid State Phenomena v.47;48 T. Abe;K. Hagimoto
  28. Abstract of the ICCG 12/ICVGE 10 N. Puzanov;A. Eidenson;D. Pusznov
  29. J. Cryst. Growth v.68 P.J. Roksnoer
  30. Semiconductor Silicon 1986 H. Harada;T. Abe;J. Chikawa;H.R. Huff(ed.);T. Abe(ed.);B.O. Kolbesen(ed.)
  31. J. Cryst. Growth v.30 A.J.R. de Kock;P.J. Roksnoer;P.G.T. Boron
  32. Int. Phys. Conf. Ser. No. 23 W. Keller;A. Muehbouer
  33. Semicond. Sci. Technol. v.7 H. Yamagishi;I. Fusegawa;N. Fujimaki;M. Katayama
  34. J. Electrochem. Soc. v.132 W. Lin;M. Stavola
  35. Semicondutor Silicon 1994 E. Iino;K. Takano;I. Fusegawa;H. Yamagishi;H.R. Huff(ed.);W. Bergholz(ed.);K Sumino(ed.)
  36. private communication M. Suezawa
  37. Z. Phys. v.B20 Y. Waseda;K. Suzuki