Electrical properties of La-doped BaTiO3 synthesized by homogeneous precipitation

균일침전법으로 제조된 란탄이 혼입된 $BaTiO_3$의 전기적 특성

  • Huh, Woo-Young (Research Institute for Natural Science and Department of Chemistry, Hanyang University) ;
  • Ryu, Kyoung-Youl (Research Institute for Natural Science and Department of Chemistry, Hanyang University) ;
  • Kim, Seung-Won (Dept. of Chemical Engineering) ;
  • Lee, Chul (Research Institute for Natural Science and Department of Chemistry, Hanyang University)
  • 허우영 (한양대학교 자연과학연구소, 자연과학대학 화학과) ;
  • 류경열 (한양대학교 자연과학연구소, 자연과학대학 화학과) ;
  • 김승원 (여수대학교 화학공학과) ;
  • 이철 (한양대학교 자연과학연구소, 자연과학대학 화학과)
  • Published : 1999.10.01

Abstract

La-doped $BaTiO_3$ ceramics were prepared from BaTiO(C_2O_4)_2\;{\cdot}\;XH_2O(BTO)$, which was synthesized by homogeneous precipitation using dimethyl oxalate. The electrical properties of La-doped $BaTiO_3$ were investigated with variation of La-contents and particle size. It was found that a large PTCR (positive temperature coefficient of resistivity) effect was appeared in the conditions at the 0.6 mol% of La-content and at small particle size of BTO as 1.0$\mu\textrm{m}$. The plot of temperature vs. 1/$\varepsilon_m$(T) above Curie temperature $(T_c)$ was agreed with Curie-Weiss law. The potential barrier calculated from measured resistance and capacitance of specimen, also gave higher value at small particle size of BTO as 1.0 $\mu\textrm{m}$ and at La-content of 0.6 mol%.

La가 혼입된 $BaTiO_3$를 균일침전법으로 제조하여 La의 혼입량 및 입자의 크기 변화에 따른 전기적 특성을 관찰하였다. 온도변화에 따른 저항을 측정한 결과 란탄의 농도가 0.6 mol%일 때 그리고 입자의 크기가 1.0 $\mu\textrm{m}$으로 작을 때 가장 큰 PTCR 효과를 나타내었다. 상전이온도($(T_c)$) 이상에서 온도와 1/$\varepsilon_m$(T)의 관계를 나타낸 도시에 의하면 유전상수의 변화가 Curie-weiss 법칙에 잘 다름을 알 수 있었다. 측정한 비저항과 유전상수로부터 계산한 전위장벽의 높이도 란탄의 농도가 0.6 mol%일 때 입자의 크기가 1.0$\mu\textrm{m}$으로 작을 때 가장 큰 전위장벽을 나타내었다.

Keywords

References

  1. Am Ceram. Soc. Bull. v.34 M. McQuarrie
  2. J. Am. Ceram. Soc. v.44 O. Saburi
  3. J. Am. Ceram. Soc. v.68 G.V. Lewis;C.R.A. Cathlow;R.E.W. Casselton
  4. German Pat. 929,350 P.W. Haayman;R.W. Dam;H.A. Klasens
  5. J. Am. Ceram. Soc. v.47 W. Heywang
  6. Solid-State Electron. v.6 G.H. Jonker
  7. J. Appl. Phys. v.67 J. Illingworth;H.M. Al-Allak;A.W. Brinkman;J. Woods
  8. Bull, Kor. Chem. Soc. v.18 C. Min;S. Kim;C. Lee
  9. Anal. Sci. and Tech. v.10 C. Min;C. Lee
  10. Standard Methods of Chemical Analysis N.H. Furman
  11. Elements of Materials Science and Engineering L.H. Van Vlack
  12. J. Am. Ceram. Soc. v.73 F.S. Yen;Y.H. Chang
  13. Elements of X-ray Diffraction B.D. Cullity
  14. J. Am. Ceram. Soc. v.77 B.D. Begg;E.R. Vance;J. Nowotny
  15. J. Mater. Res. v.10 B.W.Lee;K.H. Auh
  16. J. Am. Ceram. Soc. v.79 H.I. Hsiang;F.S. Yen
  17. J. Mater. Sci. Lett. v.7 L.A. Xue;Y. Chen;R.J. Brook
  18. Solid-State Electron. v.3 W. Heywang