Numerical simulation for ultrafine SiC powder synthesis using the vapor phase reaction

기상반응을 이용한 SiC 초미분말 합성에 관한 수치모사

  • 유용호 (강원대학교 신소재공학과) ;
  • 어경훈 (강원대학교 신소재공학과) ;
  • 송은석 (한양대학교 화학공학과) ;
  • 이성철 (한양대학교 세라믹공정연구센터) ;
  • 소명기 (한양대학교 세라믹공정연구센터)
  • Published : 1999.12.01

Abstract

The numerical simulation method was utilized to investigate the optimal condition for synthesizing ultrafine SiC powders by using $TMS[Si(CH_3)_4]-H_2$ gaseous mixtures in the horizontal reactor. As a result of the theoretical analysis, the conversion percentage of TMS source was increased with increasing reaction temperature, however, which was decreased with increasing H$_2$flow rate. Though the SiC particles concentration synthesized was decreased with increasing the reaction temperature due to the higher collision rate in the gas phase, they were increased with increasing the H$_2$flow rate and TMS concentration. The SiC particle size showed a tendency to become larger as the reaction temperature and the initial TMS concentration were increased and smaller as the H$_2$ flow rate was increased. The variation of experimental particle size with the reaction temperature, H$_2$flow rate and TMS concentration was agreed with the theoretical results.

수평형 반응로에서 $TMS[Si(CH_3)_4]-H_2$ 와 H$_2$가스를 이용하여 SiC 초미분말 합성시 최적 공정 조건을 알아보기 위하여 수치모사방법을 이용하였다. 이론적인 해석 결과, 반응온도가 증가함에 따라 TMS의 전환률은 증가하였지만, 수소유량이 증가함에 따라서는 TMS 전환률이 감소하였다. 또한 반응온도가 높을수록 기상의 충돌확률이 증가하여 최종 생성된 SiC 입자농도는 감소하였지만, 수소유량과 TMS 농도가 증가하는 경우에서는 생성된 입자농도가 증가하였다. 한편 입자크기는 반응온도와 초기 TMS 농도가 증가함에 따라 증가하였지만 수소유량이 증가하는 결향을 나타내었다. 이러한 반응온도, 수소유량 및 TMS 농도에 따른 입자크기 변화는 실제 실한 결과와 이론적으로 고찰한 결과가 일치하였다.

Keywords

References

  1. J Less-Common Met. v.68 Y. Okabe;J. Hojo;A. Kato
  2. Kyushu University v.41 no.4 A. Kato;J. Hojo;Y. Okabe
  3. J. Korean Ceramic Soc. v.35 no.11 K.H. Er;S.H. Lee;Y.H. Yoo;M.G. So
  4. J. Korean Ceramic Soc. v.36 no.8 Y.H. Yoo;K.H. Er;M.G. So
  5. HWAHAK KONGHAK v.37 no.1 B.S. Chae;K.S. Kim
  6. J. Korean Ceramic Soc. v.32 no.11 K.S. Kim;B.S. Hyun
  7. J. Aerosol Sci. v.20 no.1 S.E. Pratsinis;K.S. Kim
  8. Surface and Coatings Technology v.80 F. Henry;B. Armas;C. Combescure;A. Figueras;S. Garelik
  9. Smoke, Dust and Haze S.K. Friendlander
  10. Atmospheric Chemistry and Physics of Air Pollution J.H. Seinfeid
  11. J. AIChE v.34 no.6 K.S. Kim;S.E. Pratsinis