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ABSTRACT

Using Asynchronous Transfer Mode(ATM) which is a high-bandwidth, low—-delay, cell switching and
multiplexing technology, Broadband-Integrated Services Digital Network (B-ISDN) can support
communication services of all kinds. To evaluate the performance of ATM networks, traffic source models
to meet the requirements are demanded. We can obtain random traffic distribution for ATM networks
by using the Cellular Automata (CA) which have effective random pattern generation capability. In this
paper we propose an algorithm using 2-D LHCA to generate more effective random patterns with good
random characteristics. And we show that the randomness by 2-D LHCA is better than that of the
randomness by 1-D LHCA.
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1. Introduction oriented and connectionless traffic and negotiated
Quality of Services (QoS) to the end user. Also, to

ATM can accomodate variable bit-rate services a network provider, it enables the transport of dif-
because slots are allocated to services on demand. ferent traffic types through the same network. To
It should provide the ability to transport connection evaluate the performance of ATM networks, traffic

- - — source models to meet the requirements are de-
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modeling techniques are not sufficient to simulate
actual traffic[1].

Cellular Automata have been introduced by Von
Neumann and Ulam as models of self-organizing
and self-reproducing behaviors[2,3]. A CA is a
necessity in many application areas such as test
pattern generation, pseudo-random number genera-
tion, cryptography, error correcting codes and
signature analysis[4-9]. Since a CA has a regular
uniform array of nearest neighbor interconnection
with combinational logic, it can effectively generate
random patterns which have good randomness
characteristics. It is classified into One-Dimensional
CA(1-D CA) and Two-Dimensional CA(2-D CA)
by its neighborhood connection and transition rule.
In recent years, One-Dimensional Linear Hybrid
CA(1-D LHCA) has been proposed as an alternative
to Linear Feedback Shift Register(LFSR)[10].

In this paper, we consider 2-D LHCA as ex-
tensions of 1-D LHCA which can display much
better random patterns than those generated by
1-D LHCA or LFSR. We propose boundary conditions
of 2-D LHCA to find 2-D LHCA rules whose
characteristic polynomials are primitive polynomials
of degree 32 and propose an algorithm for generating
traffic distribution using 2-D LHCA. It is well-
known that a CA has a maximum length if and
only if the characteristic polynomial of the transition
matrix is primitive. But it is very difficult to find
2-D LHCA rules whose characteristic polynomials
are primitive polynomials of degree 32. We give
three 2-D LHCA rules whose characteristic poly-
nomials are primitive polynomials of degree 32 re-
spectively. And we show that the randomness of our
result is better than the randomness by 1-D LHCA
by the comparision of 1-D LHCA and 2-D LHCA.

2. Preliminaries

2.1 Definition(12]

A primitive polynomial p(x) of degree » is an
irreducible polynomial such that the minimum

value of m for which p(x) divides x™ + 1 is
2" —1.

It is well-known that a CA has a maximum
length if and only if the characteristic polynomial

of the transition matrix is primitive[13].

2.2 Example

a) The polynomial x'+ x®+x*+x+1 is irreduc-
ible but not primitive.
b) The polynomial
D L Bt o
+aS+ xS at

is primitive.

2.3 Definition(b)

A 2-D CA is a generalization of 1-D CA, where
the cells are arranged in a two-dimensional grid
with connections among the neighboring cells. A
2-D CA is composed of mn cells organized as an
mx n array with m rows and #» columns. The
state transition of the 2-D CA can be represented
by an mn X mn binary matrix. The next state
of a cell depends on its four neighbors(top, left,
bottom, right) and itself(five-neighborhood depen-
dency). Thus, the next state ¢ of the (i, 7)-th
cell of a 2-D CA is given by

t+1

¢ t ¢ ¢ ¢
q ij =f(4ij, qi—1,5»49ij-1>49i+1,j>» lli,;'+1)

From now we consider only 2-D CA with a
linear neighborhood relationship(XOR function).
For the five neighborhood dependency, rule can be
expressed as a 5-bit number(self, top, left, bottom,
right), where each bit signifies the presence of the
corresponding dependency. The process of parti-
tioning the state transition matrix of a 2-D CA is
reported in [6].

3. Main Results

In this section, we propose boundary conditions
of 2-D LHCA and propose an algorithm for genera-
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ting traffic distributions using 2-D LHCA. And we
give three 2-D LHCA rules whose characteristic
polynomials are primitive polynomials of degree 32
respectively.

3.1 Definitions
3.1.1 Boundary conditions

First, boundary cells in mXx n 2-D CA are given
by
- a;; ‘- left-most cell in each row
* a;, - right-most cell in each row
* a;; ' top~most cell in each column

* a,; ' bottom-most cell in each column
where i=1, -, m , j=1,,n

Then boundary conditions can be classified as
following.
a) Class 1 : Null Boundary 2-D CA(See Fig. 1)

- The boundary values are all zero.
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Fig. 1. Null Boundary 2-D CA

b) Class 2 : Intermediate Boundary 2-D CA
- Boundary conditions are divided into three
types by different boundary value of left
(right)-most cell in each row. And boundary
values of top and bottom are zero.
@ Type 1 : Pure 2-D IBCA(See Fig. 2)
- Intermediate boundary condition is applied to

only a,, and a,..

-

———— ke
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Fig. 2. Type 1 : Pure 2-D IBCA

The rest of boundary cells have null boundary
condition.

And a;; be the left neighbor of a;,and

anma—p are the right neighbor of a,,

@ Type 2 : Inner 2-D IBCA(See Fig. 3)

_____ - -

- 4- -]
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Fig. 3. Type 2 : Inner 2-D IBCA

- Intermediate boundary condition is applied to
only a;; and a;, where =1, -, m.
That is, left neighbor of a;; is ;3 and
right neighbor of a;, is a@;,-2.
® Type 3 : Outer 2-D IBCA(See Fig. 4)

- a1, amn cells obey Type 1.

Left neighbor of a@;; is a;-;, and right
neighbor of a;, 1S a@;+11-

We use a video traffic source. Now, a single

video source is approximated by an autoregressive
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Fig. 4. Type 3 : Quter 2-D IBCA

process. The definition of an autoregressive process

is as follows:

3.1.2 AR(1) Model[1,2]

An autoregressive process {X(»)} is given by
X(n)= mﬁ:l/lmX(n— m)+ pw(n),

where X(#n) represents the source bit rate during
the »-th frame; K is the model order; w(#n) is a
Gaussian random process; and A,,(m=1,2,, K)
and p are coefficients.

The steady-state distribution of X is Gauss-
ian. It is shown that the first order autoregressive
Markov model X(#)=A; X(n—1)+ zw(#n) is suf-
ficient for engineering purposes. This model provides
the rather accurate approximation of the bit rate
of a single video source without scene changes.
This model is suitable for use in simulations{4].

3.2 Algorithm

The well-known Rejection Method can be used
to simulate a random variable having density func
tion g(x). We can use this as the basis for
simulating from the continuous distribution having
density f(x) by simulating Y from g and then

accepting this simulated value with a probability

: AY)
proportional to 2(V)

Let ¢ be a constant such that

<c

g(y)

for all y.
Since each iteration during executing the algorithm
will, independently, result in an accepted value
with probability P{ U< ~HEL} = L it follows
that the number of iterations is geometric with
mean c¢ [14].

To simulate a unit Gaussian random variable Z
(that is, one with mean 0 and variance 1), note that
the absolute value of Z has density function

_x
2

f(x)=—\/22—7re , 0<¢x< oo

We will start by simulating from the above density

by using the rejection method with
gx)=e " )

Now, note that
Ax) J 2¢ —(x=1* | 2e
glx) s exp{ 2 ] = F

Let ¢= 2e . Then MSC.
Ire g(x)

0<x( oo

The algorithm is as follows :

3.2.1 The algorithm for generating a Gaussian
distribution using 2-D LHCA

step 1 ! Generate R, , Ry,
step 2 : Compute

Y]Z —log(Rl) N Y2= _IOg(Rg) ,
- 2
step 3 ¢ If Yz—%l—)>0,
1z2
set Y= Yz_(Y—IZJ)_

and go to step 4 ;
Otherwise go to step 1 ;

step 4 : Generate a random number U and set

Y,. if Us—%-
Z:
-Y,. it U>%
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The random variables Z and Y generated by the
above are independent with Z being normal with
mean O and variance 1 and Y being exponential
with rate 1.

And Z can be replaced by u + 0z to have a
Gaussian random variable with mean x and
variance o¢?. The other variables Y, , ¥, and Y
are all exponential variables with mean 1. If U is
a uniforrm variable on (0,1) , —logU
exponential variable with mean 1 [14].

is a

3.22 2-D LHCA Rules

Three 2-D LHCAs are used to generate three
independent uniform variables (R;, R, and U) .

Here, R, is generated by the rule

23 30 23 30 23 30 23 30
30 23 30 23 30 23 30 23
23 30 23 30 23 30 23 30
30 23 30 23 30 23 30 23

with Type 1,

R, is generated by the rule

714 74 714 7T U
4 714 714 714 7
T4 T4 T4 TN
4 714 714 714 7

with Type 1

and

U is generated by the rule

21 5 21 21 21 21 5 21
2121 21 5 21 21 21 21
215 52121212 5
52156 5 521215

with Type 3.

These three rules have the primitive polynomials:
B R R A %8+ B+ 4
+ x4+ T+ 2t 1,
224 62+ B T+ PP+ a0+ %®
B R R R N A |

+
32 x31

and x + x4+ x4+ 1 respectively.

We found the above three 2-D CA rules by
many simulations.

Fig. 5 shows the simulating result that is the
Probability Density Function curve of the generated

t{x)(+10-4)

450
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Fig. 5. Probability Density Function curve of a

generated Gaussian random sequence

Gaussian random sequence using 2-D LHCA.

3.3 Statistical testing

The statistical testing results are satisfactory as

following:
N 2015 Sum Wgts 2015
Mean 29.82471 Sum 60096.79
Std Dev 9.995745 Variance 99.91491
Skewness -0.06845 Kurtosis -0.28458
Uss 1993598 CSS 201228.6
Ccv 3351498 | Std Mean | 0.222678
T:Mean=0 133.9364 Pr> Tl 0.0001
Sgn Rank 1015551 Pr>=|S| 0.0001
Num ~=0 2015
M(Sign) 10055 Pr>=Ml 0.0001
D:Normal 0.016822 Pr>D >0.15

3.4 Comparision of 1-D LHCA and 2-D

LHCA

In this section we compare 1-D LHCA and 2-D

LHCA. The test criteria considered for this compar-
ative study include bit frequency test, bit auto-/
cross—correlation and visual inspection of state-time
diagram. In fact, in Figure 5 it is not possible to
compare the pdf curves of generated Gaussian
random sequences by 1-D LHCA and 2-D LHCA.
So we give a figure (Fig.6) and a table(Table 1)
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(b)

Fig. 6. (a) Random non-zero initial sites with 1-D
LHCA,

(b) Random non-zero initial sites with 2-D
LHCA

comparing the randomness of 1-D LHCA and 2-D
LHCA. Fig.6 and Table 1 [6] show that the random-
ness of 2-D LHCA is better than that of 1-D LHCA.

4. Conclusion

In this paper, we proposed new boundary condi-
tions of 2-D LHCA and proposed an algorithm for
generating traffic distributions using 2-D LHCA
in ATM networks.
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By the comparison of 1-D LHCA and 2-D LHCA
we showed that the randomness of our result is
better than that of the randomness by 1-D LHCA.
Also, we found three 2-D LHCA rules whose char-
acteristic polynomials are primitive polynomials of

degree 32 respectively.
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