A EEA 19999 Add A2z 87
=1-99-4-2-01
M S FEEE ARE AgHE FHEA
AEE* 3T
Augmented Reality Using Projective Information

Yongduek Seo* and Ki-Sang Hong™

g 9«9

7MY A A HFE 298 g A Ede ‘”"‘Ur FAste FAELE FHIPAAME Tl 28AE 2 W
e Fhiledst of A °1‘231511E Hetlle 3d 92 A4 &3 EH?E oFAEIE WEAl Fasith wphA, 71Ee Wy
2 U A WRESE A £ ds AA GAAM @ojAE AEE o &ste stdEte] FEHERE AMEAY, 4
A Gl et EAE 14§} & A B4 sEo] HOTE o E}” BlA 1 e gl A et e WRus
g TEAHEE S Addste e AH-SATh o] ExoMe AAGEAM FoAE AFHERTE e BAglel 7
F AT FI7EE7E Tt ol FARE o]fdt AL S -?-Eio}é g Adeh A4 st YR K=Y
T olTAEE A fgte TS B s, sHvhilele AAIF TS M 2y T dde HOM A
Aol AHEA7E et THEET #EAY VIENEY YRR ETH FeAh Adste HHE i YiHsed dig 3
BE w2 78 gavt glon I dRge] Adde BE /5 vRIFHUEFTY FREE 78] 7hedttde AE By
Foh

Abstract

We propose an algorithm for augmenting a real video sequence with views of graphics ojbects without metric calibration of
the video camera by representing the motion of the video camera in projective space, We define a virtual camera, through
which views of graphics objects are generated, attached to the real camera by specifying image locations of the world
coordinate system of the virtual world. The virtual camera is decomposed into calibration and motion components in order to
make full use of graphics tools. The projective motion of the real camera recovered from image matches has a function of
transferring the virtual camera and makes the virtual camera move according to the motion of the real camera. The virtual
camera also follows the change of the internal parameters of the real camera. This paper shows theoretical and experimental
results of our application of non-metric vision to augmented reality,

Index terms: augmented reality, Euclidean geometry, virtual camera, perspective projection, projective geometry, calibration-free method

1. Introduction in augmented reality are generally 3D graphics models

and the images of them are rendered by graphics

Making views of a 3D graphic model and mixing machines and overlayed on real-video frames. Appli-
them into a video in real time has been the major cations include image-guided or assisted surgery or its
subject of augmented reality(1]. The virtual objects used training [2.3], assembly, maintenance and repair [4.5],
* sty ARA 7L JAATATA simulating light conditions of an outdoor building [6],

Pohang University of Sience and Technology etc. All of these systems enrich reality or real video
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Fig 1. The relationship of various coordinate systems.

with computer-generated views of graphical objects,
cooperating with computer vision techniques: estimating
the camera parameters [7], resolving occlusion between a
virtual object and a real object [8.9], and correcting the
registered location of a graphic object dynamically [2].
Camera calibration is a prerequisite for embedding
virtual objects into video frames because the geometric
relationship among physical objects, virfual objects and
the camera need be established to get correct views of
the model object. Figure ilustrates this relationship. In
the figure, the coordinate system for the real camera is
denoted by O, and the coordinate system for the virtual
camera looking at the graphics objects is denoted by O,

D7 denotes the Euclidean displacement between two
coordinate systems Oy and O,. The transformation
between real camera O, and virtual camera O, s
represented by the non-singular 3D projective trans-
formation H!} and the transformation between O, and
0. by H\. For physically correct video augmentation,
all these coordinate transformations should be known
\emphla prioril, and the usual transformation H¢-

between the physical video camera coordinate system
O and the virtual camera coordinate system O, is the
identity transformation. The camera calibration step of
the usual augmented reality systems estimates the
coordinate transformation D¢ between the world coordi-
nate system O, and the camera coordinate system O,

as well as the Internal calibration parameters, eg.
focal length, of the real camera. The estimated
parameters are then utilized for the virtual camera

attached to the real one. If the camera changes its
internal parameters, like focal length. and undergoes free
three dimensional motion, it is necessary to calibrate the
camera at every frame and in this case some reference
points or patterns whose Euclidean geometry is known
must be seen in the video, However, without those
fiducial points, it is difficult to calibrate cameras for
general video images and one should consider other ways
like self-calibration methods [1011,12) or a cali-
bration-free augmented reality system like [13]. For
example, Faugeras applied a self-calibration method for
fixed internal parameters to the augmentation of real
video sequences [14]. Selfcalibration provides not only
calibration parameters but also the Fuclidean motion of
the real camera. However, the convergence issue of the
methods due to a non-linear formulation may constrain
practical applications.

The work of Kutulakos and Vallino [13] was
innovative in the sense that they showed some results of
video augmentation without Euclidean calibration of the
video camera by applying affine object representation.
However, their method could not be applied directly to
the augmentation of general video sequences having
perspective projection effects because they assumed an
orthographic projection camera. In addition, it could not
make use of the fundamental effects of computer
graphics such as lighting, shading, and shadows because
their affine coordinate representation does not obey the
principle of computer graphics described in Euclidean
geomelry,

In this paper, motivated by the work of Kutulakos
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and Vallino, we propose a method for augmenting a real
video sequence captured by a perspective projection
camera without the need for calibration
procedure. There have been a lot of researches on
applications: human and robot
interface and interactive grasping with uncalibrated
stereo vision [15], visual control or visual guided tasks
[16,171, navigation [18,19], object recognition [20], etc.
We apply the functionalities of non-metric computer
vision to the augmentation of real video without giving
up the fundamental feafures of computer graphics like
lighting or shading.

QOur algorithm consists of two parts: embedding and
rendering. The world coordinate frame for graphics

camera

non-mefric  vision

objects are specified in two selected video images in
order to insert the virtual world into the real world
(embedding). The view of the world coordinate system
from a video image provides a virtual ‘camera matrix,
attached to the real camera, through which the graphics
view is generated. We have to specify five basis points
(Figure 5) of the frame in the first selected video image
and four in the second. The relationship of the world
coordinate frame to the virtual camera and the
computation algorithm for the relationship are presented
in Section 4. In short, our method directly specifies the
relationship between the world coordinate system and
the virfual camera coordinate system in image space.
This relationship is denoted by D} in Figure 1.

Therefore, the relationship H!. between the wvirtual

camera and the real camera is no longer the identity
transformation but a fixed general 3D projctive
transformation that is unknown.

The virtual camera is modeled as a pin-hole camera
with zero skew and graphics images are synthesized
using the components of the virtual camera by an SGI
graphics computer with the OpenGLTM library
(rendering). Thus, we can generafe perspeciive views
of graphic objects, as shown in Section 5. The motion
and change of the internal parmaters like focal length of
the real video camera is represented by projective
camera matrices that can be obtained through a
projective reconstruction algorithm [21,22,23]. There has
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been a lot of research for projective structure and
motion estimation. They can be obtained by first
computing the fundamental matrix or the multi-linear
tensor like trifocal tensor followed by estimating the
structure and motion [24,25,26,19,17]1. Possible approaches
for multiple views are the factorization method for
projective structure [27] or the framework of affinely or
projectively reduced setting [26]. Note that the
reconstruction is up to a three dimensional projective
transformation and finding the transformation is related
to self-calibration methods. In this paper, we briefly
review the theory of projective reconstruction in Section
2.1. We use in this paper a two view algorithm for a
real-time application like the system of Kutulakos and
Vallino [13]. The components of the virtual camera are
determined by the locations of the basis points of the
world coordinate frame in a video image transferred by
the recovered projective structure and motion, which
allows the virtual camera to move and change its
internal parameters according to the change of rotation,
translation and internal parameters of the real video
camera. Details of this are given in Section 5.1.

The embedding procedure is similar to the method of
Kutulakos and Vallino [13], but our method is different
In many respects as can be seen from the comparison in
Table 1. We specify five points in the first image and
four in the second which define the virtual camera of
the perspective projection model. In contrast, they specified
four locations in the first and the second images and the
camera model is an orthographic camera which cannot

Table 1. Comparison of video augmentation algorithms.

Affine Orthographic [13]{Non-Metric Perspective

No. of init. paints (4,4) (54)
3D info. used affine projective
Estimation difficulty X XX
Distortion in graphics affine projective
Perspectivity impossible possible

Shading \& shadow impossible possible

Euclidean pattern not required not required
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generate a perspective view, The 3D motion and
structure information utilized are affine and projective,
respectively. Therefore, there are corresponding intrinsic
distortions in synthesized graphics views. Estimating
projective reconstruction from perspective views is more
difficult than affine reconstruction from orthographic
views. In contrast with the orthographic system, which
cannot generate a perspective graphics view due to its
intrinsic property, our uncalibrated method can synthesize
such a view, Finally, the most distinctive feature, from
the viewpoint of practical application, is In the usage of
well developed graphics tools. The orthographic system
does not decompose the affine camera into intrinsic
calibration components and extrinsic components, which
makes it impossible for the system to generate shading
and shadow effects in graphics views. However, we
decomposed the virtual camera into the fwo components
and we can specify lightings and material properties to
make shaded objects as well as their shadows,

Section Zpresents some preliminaries and notations,
Section 3 gives a brief overview of our algorithm. Details
are given in the following sections. Section 4 deals with
how to define the world coordinate frame of two
selected video images and how to compute their
corresponding  virtual cameras. A method to compute
virtual cameras for other video images and interface
with the graphics library is provided in Section 5.
Section 6 shows the experimental results of our method,
Section 7 describes a relationship between real camera
and virtual camera, and deals with the problem of
different inherent in our
application of non-metric method of
embedding the world coordinate system might seem as
if it were a method of self-calibration. However, note
that the inserted coordinate frame is not a real frame
but a virtual frame specified interactively, and it makes
the virtual camera mimic the action of the real camera,
Finally, concluding remarks are given in Section 8.

perspectives, which s
vision. Qur

2. Preliminaries

A 2D image point is represented by a 3D homo-
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geneous vector x with the third component being one.
Also a 3D space point is represented by a 4D
homogeneous vector X with the fourth component being
one:

x=luv 1]’ X={xY2Z1]" (1)

The k-th video image is represented by I,. The 3x4
camera matrix obtained by projective reconstruction from
real video images is denoted by P,.

A 3x4 virtual camera matrix is denoted by @, which
Is decomposed into a calibration part and Euclidean
motion part as follows:

Q = pKI[R 1]
(H

2
[ Al, (3)

where o is a non-zero scale, R and ¢ are rotation and
translation, respectively, and K is a 3X3 calibration
matrix of the form:

(4)

We call this kind of camera a zero-skew camera. The
3X3 matrix H and 3D vector h are defined to be equal
to KR and Kt respectively, up to a scalar p:

H = pKR, (5)
= pKt. (6)

A zero-skew camera satisfies the following proposition
[28]:

Proposition 1 Let ¢, ¢. and g be three rows of Hof a
zero-skew camera @Q represented in column vector form.
Then

(g xqg3) - (gaXqgy)=0, (N

where X and are the outer product and the inner
product of three dimensional vectors, respectively.

Notice that Equation (7) satisfies regardless of the
scale factor p. The proof is not difficult and this
proposition is useful in the computation of the matrix of
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a virtual camera as shown in Section 4.2.
2.1 Projective Reconstruction

We use the results of projective reconstruction, in order
to transfer the virtual camera according to the motion of
the real video camera, for embedding graphic objects and
rendering them. In this section, we briefly review a
method for projective motion and structure estimation that
has been developed in computer vision society.

Given matching points between two views, we can
compute the fundamental matrix F using the equation
[22.29,30]:

X:Fx,=0, (8)

where x, Is an image point from one view and x. is

from the other view. Then, two camera matrices are
chosen as

P=[110), Py-[le,.Fl el (9)
where e, is the epipole in the second image (the left
null of F, F'e,=0 ) and [e.]« is the 3X3 skew
matrix such that [ e,l.x=e,xx[24].

A projective 3D point X, is reconstructed from its
image match( xy;, xo; ) by back-projection equations:

x;=P; X, xy=xP,X,, (10)

where the notation = denotes equality up to scale.

Solving a linear least-square equation gives X;.
Conversely, the camera matrix P, for the k-th image

may be computed given matches ( x,;, X, ) of image

points and their corresponding 3D points using the
projection equation

X = P X, for i=1,-- N, (11)

or more specifically

Py X,
Pix;’

X
X'_, for i+1,...N, (12)

i

U=

> wlE e

r
Ui = p
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P i is the n-th row of

the camera matrix P, and N is the number of the

where  x=[ t, v, 117

2D-3D correspondences.

Notice that this reconstruction is up fo a three
dimensional projective transformation. That is, there is a
4 X4 non-singular matrix 7T 4x, such that

P T . .=P§ (13)

for all k, where P is the true camera malrix that can
be decomposed into its calibration part Kj and

Euclidean motion parts R § and ¢;:
Pi=K{[Ri | &) (14)

Note that Kj is an upper (riangular matrix
representing the internal calibration parameters of the
real camera, e.g. focal length, and Rf is the relative
direction and ¢f is the relative location of the camera
coordinate system with respect to the world coordinate
system. As soon as the transformation 7%., is known,
the projective reconstruction may be upgraded to a
Euclidean  version.  Estimating  the  projective
transformation 7%., has been a subject of self-
calibration[10.11,12,31]. Note that the Euclidean camera
matrices Pj can be directly used for graphics rendering
using a graphics machine, but projective camera
matrices cannot be used because they are not of the
mform of Equation (14), which is the reason we
define a virtual camera. Section 7explains the
relationship befween the real camera and virtual
camera.

2.2 Projective Plane Homography

exists a 3X3 projective plane homography T, such that
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x,f%Tux,- (15)

as illustrated in Figure 2, We can compute 7 using
more than four point matches with a least-square
method. When the fundamental matrix F is given,
three point matches are enough because the two epipoles
e and &' obey Equation (15)[29].

\\C [l
Fig. 2. Plane homography T @ #—n

3. Overview

This section gives a brief overview of our algorithm.
The details of the algorithm are given in the following
sections. Qur algorithm can be divided info two parts:
embedding and rendering.

1) track image mks
2} choose two caml mmges
3) estimate projante motio

Fig. 3. Overvrew of our method:embedding procedure.

A&y HfEeEgt FEE A& $AEA

The steps of tracking feature points and estimating
the projective motion of the video camera are included
in the embedding part. First, the embedding steps,
graphically shown in Figure 3, are as follows:

(1) Track feature points in the video sequence.

{2) Choose two control images onto which the graphics
world coordinate frame will be inserted. The two
images may be from the cameras of a real-time
system or video images already captured in the case
of the off-line procedure.

(3) Estimate the projective motion, P and P’ and
structure { X;} %' for the two images using point
correspondences as described in Section 2.1.

(4) Specify the locations {(x?, x?)} of the basis points
of the world coordinate frame in each of the control
images, five in the first and four in the second.

(5) Compute the 3D projective coordinates X2,
i=0,..,4, of the five specified basis points

{(x% x?)) using Pand P

Second, the rendering steps, shown in Figure 4, are as
follows:

(6) (a) For k-th mput video image i, detect image
corner points and compute P, the k-th

projective camera matrix.
4
i-Q

{x?}
onto k-th video image i, using the projection

(b) Transfer or project the 3D points,

equation x %= P, X%,i=0,....4

(6} project f{ int %

(), (31 0 - Kni

{ genarate Grapis]

Fig. 4. Overview of our method:rendering procedure.
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(7) Compute the corresponding virtual camera @, using

the image points {x%}; ,. according to the method

in Section 4.2.

(8) Decompose @, @, = o Kkl By | 1,1

(9) (a) Set virtual camera in graphics machine using
K, R, and ¢,
(b) Locate graphics objects with respect to the world
coordinate system and define their characteristics like
color, specularity and lighting conditions.

(10) The graphics view iy, synthesized from the

graphics machine, is overlayed on i,.

4. Embedding

The first thing we have to do is to find feature
matching points and compute projective camera matrices,
P and P’ of the two control views and the 3D
projective coordinates { X}, . Our projective reconstruction
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X ;
Fig. 5. Vertices of the world coordinate system

method estimates the fundamental mafrix using image
matches from the two control views, Then, two projective
camera matrices, P and P’, for the control views are given
from Equation (9). Projective 3D coordinates (X}, of
the image matches are computed using Equation (10).

Video augmentation is accomplished by first specifying the
graphic world coordinate system into the control images denoted
by vand v. For example, Figure 6 shows two control images
T and Tuy from 274 video images used in our experiments,

Fig. 6. (a) Five points are specified embedding in , and (b) four points on the corresponding epipolar lines in . Specified image
points determine its corresponding virtual camera from which the images of the world coordinate frame are drawn in (¢) and (d).
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The embedding procedure consists of two steps:

1. We insert the world coordinate system of the graphics
frame into the first control image v by specifying
the image locations of the five basis coordinates
{ Ey, E\, Ey E3, E;} of the coordinate frame,

2. With the help of the epipolar geometry, we choose
four image locations of the  coordinates
{ Eg, Ei, E; E3} in the second control image v'.

Here E,=[000117 is the origin of the world coordinate

frame and the others are the vertices (or basis points)
of the unit cube, as shown in Figure 5, and they are
defined as E,=[1.0011" E,=[01011". E;=[001.11",
E,=[10111" and so on.

4.1 Embedding via Epipolar Geometry}

First, five locations f{x; !, of the vertices are
specified in the first control image v. This determines a
look of the world coordinate frame in the video image.
Then we have five epipolar lines in the second image v’
using the fundamental matrix between the two control
images from Equation (8). Now, we choose four image

locations {x?'}f,,o of the vertices on the corresponding

epipolar lines /;:

li=Fx;, i=0,..,3. (16)

However, we do not need to specify the last one, x%.
because it can be determined by the plane homography
Ty which is determined by the equations x? = Tpx?,
1=0,1,3

Finally, we compute the projective 3D coordinates

and e’ Ty, as given in Section 2.1.

{X ?}j:o of them in order fo compute the locations of
the basis points--vertices--in the other video images.
This enables the virtual camera to move according fo
the motion of the real video camera, which is explained
in Section 5.1.

Figure 6shows an example where five image locations
in the first control image v; and four in the second v,

XE&Y G RFEAETT JEE AEse FAEA

are selected. Using the image coordinates, we can
compute the matrix of the corresponding virtual camera
as given in Section 4.2, Then the image of the world
coordinate system may be drawn in the video image, as
shown in the lower part of the figure.

4.2 Virtual Camera Computation

In principle we need to estimate the Euclidean camera
parameters of the real video camera in order to render a
graphics view according to the motion of the video
camera. However, in our case, the camera is not
calibrated and we cannot use the projective camera
matrices directly for graphics rendering. Therefore, our
approach is to define a virtual camera that looks at the
inserted world coordinate frame,

Our goal is to make the matrix of the virtual camera
generate a view of the world coordinate frame that is
the same as what we figured in the control images in
the embedding step. Let us denote a virtual camera @
by a 3 X 4 matrix

Q:[a1 as as 04] (17)

where a; is the k-th column of the matrix,. The image
location of a vertex E, is denoted by x’=[u®v?1]".

Using the relationship

A,‘X?:QE,' (18)

we have

dy — ong (19)
ay = A;xP-Agxg, for iIN{1,2,3}. (20)

Since @ can be defined up to a global scale, we fix it
temporarily: A;=1. Then, @ is of the form:

Q=[ Ay x{-x§ Arxh-x{ Ayxb-x3 xg] (2D
Using the fifth point, we have

Ayx8= QE = A, x2+ Ay x5-xB, (22)
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and components of x5 are

A ub+ Az ub-ud

b _AititAzUuz-ug

Uy = /11+A3_1 (23)
Ay vd+ A vi-uvb

b _ AUt A3 U3~ Ug

Ug = /11+/13_1 (24)

Using these two equations, we find the following
equation to compute A, and Aj:

[/11}:[ ub-ug
A vi-vh|

Now we compute the last scale factor A, using

b b b b
Ug— Uy Ug~ Uz

(25)

b b b b
Vg~ Uy Uyg~ Ug

Proposition 1. Since we know A, and As the three

vectors g1, g, and gs; may be written as:

T

qi a A U? d
H=[a, a a;V=!qs |=lb A vh-ul e (26)
a; c -l f

From Equation (7), we have a quadric equation for A,:
AA%+ BAy+ C=0, (27)

where A, B and C are the coefficients composed of
the elements of the matrix H

A = (us-d(vif-e)+ (ubc-a)vy-b), (28)

B = (ubf-de-ful)+(vaf-eXd-fu) (29)
+(ubc-a)Xb-cog) +(vac-b)a-cug)

C = (e-fod)d-fub+(b-cviia-cub) (30)
+{dc-af)(ec-bf).

Given two solutions of the equation, we choose the
larger positive one. This choice 1s due to our
implementation of the graphics program.

Note that all the A, s should be positive, which
indicates that one should be careful in choosing the
control points because the values of A,s are determined
by the image locations of the vertices chosen in the
process of embedding. Also there is a possibility of
obtaining no real solutions for Equation (27). However,

95

such a case does not occur in practice unless the control
points make a very odd configuration, If an image point
of a vertex has a negative A it means geometrically
that the point is behind the retinal plane of the virtual
camera, In this case, although the point is projected to
the desired location algebraically, we can not obtain
correct views through the graphics library.

4.3 Projection by the Virtual Camera

During the procedure of embedding, we specify some
vertices of the world coordinate frame. To facilitate this
procedure, we need to see the results of our embedding.
Given a virtual camera @ we compule the image
{E}i=567 and
examine our embedding result. An example of the result
of embedding is shown in the bottom half of Figure 6.

locations x?~QE; of the vertices

4.4 Virtual Camera Decomposition

To use the virtual camera matrix in graphics, we
should decompose it into three parts K, R and ¢ as
shown in equation (2). Since we know from Equation
(2) that

HH "= KK ", (31)

of the
matrix @ and then K is computed using Cholesky
decomposition [32]. Finally, R and ¢ are computed
using equations (5) and (6),

we first compute the scale factor o= gs |l

4.5 Emboedding Graphics Objects}

The location and pose of a 3D graphics object are
defined with respect to the world coordinate system
which is now embedded in camera coordinate system, In
this way, the characteristics of the graphics objects, such
as color, specularity of surfaces, etc, can be defined as
usual graphics modeling does, The light sources can also
be configured with respect to the embedded world
coordinate system,
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5. Rendering
Rendering for k-th video image consists of two steps:

1. Determination of the k-th virtual camera.
2. Generation of corresponding view of graphic objects
and overlaying it on the video image.

5.1 Transfer of Virtual Camera

When k-th video image is entered, corresponding
virtual camera @, is computed as follows,

1. Find image matches (x)), in the k-th video

1
image.

2. Compute the projective camera matrix P, using the
recovered 3D projective coordinates {X;}Y, of the

image matches. Equation (10) will give P,

3. Project the projective 3D basis points {X7 }f , info
the k-th video image by P, to compute {xZ,—}f .
xhxP. X%  for i=0,...4 (32)

4. Compute the k-th wvirtual camera @, using the
image points {x’;,-}f , through the procedure of
Section 4.2.

5. Decompose @, into K, R, and f, as in Section 4.4.

Note that the components, K, R, and ¢, of the

virtual camera varies during the sequence as the real
camera moves In space and changes its internal
parameters like focal length or zoom.

5.2 Graphics Rendering
We decomposed @, into three parts
Q=0 KL R | t]. (33)

Now, the scale factor 4 is no longer useful in
graphics rendering. Figure 7shows the three stages of

A4 e ETT JRE AH e S04
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Matriz Matrix

Fig. 7. Stages of coordinate transformation in a graphics
system

coordinate fransformation in a graphics machine for
making a view of a graphics object through the virtual
camera @, The rotation R, and translation ¢, define
the modeling transformation and @, gives the perspective
viewing volume. The modelview matrix M, in Figure 7is

defined by the rotation R, and ¢, as follows:

el B (34)

3

This transformation converts a 3D point X, defined
with respect to the world coordinate system O, to the
point X . with respect to the camera coordinate system
O, After that, a projection matrix is applied to yield
clip coordinates X,. The internal calibration matrix K,

determines this matrix and defines the corresponding
viewing volume. Any part of the graphic objects outside
this volume are clipped so that they are not drawn in
the final scene. Finally, the perspective division and
viewport transformation are performed to vield the final
graphic image[33]). The generated view is then
overlayed on the corresponding video image i, which

gives the effect of video augmentation.

6. Experiments

We implemented and tested our method. Figure 8
shows a result of video augmentation. This video
sequence was capfured by a hand-held video camera
and composed of 274 frames in which 32 corner points
of the rectangles were tracked to estimate the projective
motion of the video camera, We removed the effect of
motion blur in the measurement of corner points by
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Fig. 8. A result of video augmentation. The Ist and the 200-th augmented images are shown in which a teapot, a cup and a
cube were inserted. Notice the specularity of the teapot and the cup, as well as the shading effect on the objects.

dividing each image into two even and odd fields. Thus,
we processed 546 fields to ftrack the lines of the
rectangles, Corner points were found by computing the
intersections of the tracked lines.

Figure 9 shows tracked lines and their intersection
points. The size of each field was 720 X 243, The
intersection points were utilized in the estimation of the
projective motion estimation, First, two fields were
selected as the control images as shown in Figure 6, and
then the fundamental matrix were computed using the
algorithm of [30]. Projective camera matrices for the
two views were then computed, the 3D projective
coordinates were computed for the 32 intersection points,
and finally the projective camera matrices for the whole
fields were estimated by the reprojection method in the
sequence, as explained in Section 2.1 Figure 10shows the
performance of our projective motion estimation using
the tracked intersection points. It depicts the graphs of
the maximum and RMS of reprojection errors
P, X,
P X,

Eu=| x ., where x; is the i-th intersec-
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Fig. 10. Evaluation of our projective motion estimation.
Maximum and RMS reprojection errors are plotted. The axis
of abscissa denotes the field index of the video images and
the axis of ordinate the magnitude of errors in the unit of
pixel.

tion point measured in the k-th field, P} is the third
row of P, and | -+ |, is the Euclidean norm. The

maximum reprojection error was below a 14 pixel error
during the sequence, implying that the intersection
points were detected accurately. The values of the skew



98 AEY oG RYETY AUE NG Z7EA

Fig. 11. Embedding for another video sequence. (a) and (b) show two control images on which five vertices and four epipolar
lines are illustrated. (¢) and (d) give the view of the unit-cube of the world coordinate system at different view points.

(c) (d)
Fig. 12. Another video augmentation result. With respect to the embedded world coordinate system, shown in Figure 11, we
augmented the real world with two virtual light sources and one red teapot. (a) and (b) correspond to the control images. (c¢)
and (d) are 300-th augmented images, respectively.
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components of the computed virtual camera matrices were
below 107, which means that the computation of the
virfual camera matrices with fransfer operation by projective
motion and structure was very accurale in the sense that
the skews were almost zero. We used an SGI graphics
machine and a C-encoded 3D graphics program with the
OpenGL library [33]. We defined a light source and three
graphics objects with respect to the world coordinate system
whose material properties were different from each other,
Due to our system limit, the results were obtained through
an off-line process.

Figures 11 and 12show another experiment. The video
sequence was composed of 400 frames. We selected 0-th
and 100-th video images as the two control images in which
the locations of the five vertices of the world coordiate
system were interactively chosen. Figure 11 (a) and (b)
show the two control images, five vertices chosen, and four
epipolar lines drawn for embedding, Figure 11(c) and (d)
show the 300-th and 399-th images, on which the unit cube
of the world coordinate system embedded was drawn,
Figure 12 shows four augmented video images. They
correspond to (a) 0-th, (b) 100-th, (c) 300-th, and (d)
399-th images, respectively. In this experiment., we used two
light sources and one red teapot for the virtual world, '

7. Real Camera vs. Virtual Camera

Now, let us consider the relationship between the real
camera and virtual camera. As explained in the previous
sections, a virtual camera is defined and computed using
the manually specified image coordinates of the vertices
{E;} of the world coordinate system, while their

{X?) are computed using the
projective camera matrices {P,} of the real camera, We

have the following relationship from the definition of our
virtual camera:

projective coordinates

= QE,;. (35)

The projective coordinates of the vertices are computed
using the following equation:

xP=pxt. (35)

9%

We know that there exists an unknown 3D projective
transformation 7°%.; as mentioned in Section 2.1:

Py Tia=P§. (37)

Let us suppose that we know 77%.,. Then we have

X" ~ px? (38)
= PTI1J>(4 7‘.14)/.1 IX? (39)
~ pex? (40)

where P-PTY, and X% -(70.) X° . The 3D
Euclidean coordinate X?" is a point represented in a
Euclidean coordinate system of the real world, Then, do
the coordinates {X?} constitute a rectangular coordinate
system like {E;} as shown in Figure 5?7 The answer is
no. It is clear that there exists a non-singular

transformation T between {X° '} and {E;}:
E;= TX?A. (41)

However, the transformation 7 cannot be confined to a
group of Euclidean transformations because it is deter-
mined implicitly through the procedure of embedding,
which does not guarantee the ortho-normality of the
coordinate system composed of {X?}). Hence, the trans-
formation is included in a more general class, the group
of projective transformations, even though we cannot
remove the possibility of the transformation being a
Euclidean transformation by manual specification.

Fig. 13. Implicit projective distortion. The view of a rectangular
cupe through a virtual camera shows a different
perspectivity compared 1o the views of real objects. In
particular, the face indicated by arrow would not be seen if
the rectangular cube was a real object.
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Practical implication of the 3D projective trans-
formation 7 results in a projectively distorted graphics
view. Figure 13shows an example. We tried o place a
virtual rectangular cube on the real box so that two
edges of the cube coincided with those of the real box.
If the cube had been a real object, the face indicated
by the arrow, which was caused by our embedding,
would not have been seen in the image.

8. Conclusion

We proposed a method for augmenting real video
images with computer generated perspective views of
graphic objects without explicit metric calibration of the
video camera. There are two major steps: embedding
and rendering. In order to embed the world coordinate
system with respect to the camera coordinate system,
we specified five vertices of the world coordinate frame
in the first control video image and four in the second.
Using the specified locations of the vertices, we defined
a virtual camera attached to the video camera, and
obtained effective motion of the virtual camera being
the same as that of the real video camera. In the
rendering procedure, we decomposed the virtual camera
into three components: rotation, translation and
calibration. This enabled us to make full use of the
functions of 3D computer graphics for generating views
of graphics model objects.

Our method is based on a projective reconstruction
algorithm. Without calibration of the video camera, the
recovery of the projective motion and structure of the
real world provided us with the ability to define the
virtual camera attached to the real camera and move
the virtual camera according to the motion of the real
camera. Also, the virtual camera followed the change of
the internal parameters of the real camera. The
projective distortion explained in Section 7 could be a
limitation of our algorithm, even though we could make
the augmented videos seem real. Real-time imple-
mentation is another issue, for which detecting and
tracking feature points, sequential update of projective
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motion and rendering graphics objects should be done in
real-time. Our method can be modified easily for use in
a real-time system. We hope this research provides a
link between computer vision and computer graphics,
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