Surface Morphology Study of Al,$\textrm{Ga}_{1-}$,N grown by Plasma Induced Molecular Beam Epitaxy

분자선증착법으로 성장된 AlGaN 에피층의 표면 형상 분석

  • Kim, Je-Won (Dept.of Materials Science, Korea University) ;
  • Choe, In-Hun (Dept.of Materials Science, Korea University) ;
  • Park, Yeong-Gyun (Korea Institute of Science and Technology, Semicondutor Materials Laboratory) ;
  • Kim, Yong-Tae (Korea Institute of Science and Technology, Semicondutor Materials Laboratory)
  • 김제원 (고려대학교 재료공학과) ;
  • 최인훈 (고려대학교 재료공학과) ;
  • 박영균 (한국과학기술연구원, 반도체연구실) ;
  • 김용태 (한국과학기술연구원, 반도체연구실)
  • Published : 1999.09.01

Abstract

Structural properties of $Al_xGa_1-_xN$ epilayers grown on (0001) sapphire substrate by plasma induced molecular beam epitaxy are investigated in the range of AlN molar fraction from 0.16 to 0.76. The AlN molar fraction estimated by X-ray diffraction agrees well with that of Rutherford backscattering spectroscopy, showing a good linear relationship. The uniform Auger electron microscopy depth profile and linear dependence of average atomic concentration of all the constituents of AlGaN epilayers on AlN molar fraction imply that the epitaxial growth of $Al_xGa_1-_xN$ layers with variation of AlN molar fraction is well controlled without the compositional fluctuation in depth of the epilayer. It is observed by atomic force microscopy that the surface grain shape of $Al_xGa_1-_xN$ epilayer changes from roundish to coalesced one with increasing AlN molar fraction.

분자선증착법으로 (0001) 사파이어 기판 위에 $Al_xGa_1-_xN$ 에피층을 AlN 몰비를 변화시키면서 성장시켰다. AlN 몰비는 0.16에서 0.76까지 변화시켰으며 X선의 회절 실험과 Rutherford backscattering spectroscopy 방법을 이용하여 AlN 몰비를 결정하였다. $Al_xGa_1-_xN$ 에피층의 깊이 방향의 조성 변화를 관찰하였으며 스퍼터 시간에 대해 각 원소가 일정한 원자 농도를 가짐을 알 수 있었다. AlN 몰비의 증가에 따른 표면 특성의 변화를 관찰하기 위하여 atomic force microscopy 측정을 수행하였다. 표면에서의 입자 모양이 AlN 몰비가 변화함에 따라 원형에서 침상형태로 변화함을 알 수 있었다. 표면 입자에 대한 root mean square 값과 average roughness 값을 구하였으며 AlN 몰비를 바꿈에 따라 나타나는 변화를 관찰하였다.

Keywords

References

  1. Jpn. J. Appl. Phys. v.36 S. Nakamura;M. Senoh;S.I. Nagahama;N. Iwasa;T. Yamada;T. Matsushita;H. Kiyoku;Y. Sugimoto;T.Kozaki;H. Umemoto;M. Sano;K. Chocho
  2. Appl. Phys. Lett. v.63 M.A. Khan;A. Bhattarai;J.N. Kuznia;D.T. Olson
  3. J. Appl. Phys. v.82 J.Z. Li;J.Y. Lin;H.X. Jiang;M.A. Khan;Q. Chen
  4. J. Appl. Phys. v.81 V.E. Bougroz;A.S. Zubrilov
  5. Appl. Phys. Lett. v.65 M.A. Khan;J.N. Kuznia;D.T. Olson;W.J. Schaff;J.W. Burm;M.S. Shur
  6. Appl. Phys. Lett. v.68 D. Walker;X. Zhang;P. Kung;A. Saxler;J. Xu;M. Razeghi
  7. J. Appl. Phys. v.82 S. Imanaga;H. Kawai
  8. Appl. Phys. Lett. v.71 G.Y. Xu;A. Salvador;W. Kim;Z. Fan;C. Lu;H. Tang;H. Morkoc;G. Smith;M. Estes;B. Goldenberg;W. Yang;S. Krishnankutty
  9. Appl. Phys. Lett. v.72 A. Osinsky;S. Gangopadhyay;B.W. Lim;M.Z. Anwar;M.A. Khan;D.V. Kuksenkov;H. Temkin
  10. Appl. Phys. Lett. v.65 F.A. Ponce;J.S. Major, Jr;W.E. Plano;D.F. Welch
  11. Jpn. J. Appl. Phys. v.36 Y. Ohba;H. Yoshida;R. Sato
  12. J. Appl. Phys. v.80 A.Y. Polyakov;M. Shin;J.A. Freitas;M. Skowronski;D.W. Greve;R.G. Wilson
  13. J. Korean Vac. Soc. v.8 J.W. Kim;C.S. Son;I.H. Choi;Y.K. Park;Y.T. Kim
  14. Abstracts of the 9th International Symposium on the Physics of Semicondructors and Applications J.W. Kim;C.S. Son;I.H. Choi;Y.K. Park;Y.T. Kim
  15. J. Kor. Phys. Soc. v.34 J.W. Kim;I.H. Choi;Y.K. Park;Y.T. Kim
  16. Abstracts of the 9th International Conference on Electronic Materials J.W. Kim;C.S. Son;I.H. Choi;Y.K. Park;Y.T. Kim;O. Ambacher;M. Stutzmann
  17. Mater. Res. Soc. Symp. Proc. v.339 I. Akasaki;H. Amano