화학적 기상 반응법에 의한 탄화규소 피복 흑연의 제조(II)

Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method(II)

  • 윤영훈 (한양대학교 무기재료공학과) ;
  • 최성철 (한양대학교 무기재료공학과)
  • 발행 : 1999.01.01

초록

흑연 기판에 탄화규소 전환층을 형성하는데 있어서 기판의 밀도와 기공 크기 분포의 영향이 조사되었다. 전환층형성을 위한 화학 반응은 기판의 표면 또는 표면 하부에서 SiO 기체의 침투를 통해 이루어졌다. 전환 공정 동안 기판 표면에서의 충분한 양의 SiO 기체 침투 및 연속적인 화학반응에 요구되는 기공크기 분포는 1.0~10.0$\mu\textrm{m}$ 범위인 것으로 추정되엇다. 유한요소법에 의한 탄화규소 층의 응력 해석에서는 열적 불일치에 기인하는 잔류응력 분포를 나타냈다. 그러나. X-선 회절에 의해 탄화규소 층에서는 압축응력이 측정되었으며, 탄화규소 층에서의 잔류응력 분포에 대해 SiC 층과 흑연 기판간의 interlayer의 constraining 효과, 전환층의 치밀화 거동 및 입자성장에 의해 주로 영향받는 것으로 추정되었다.

The effects of density and pore size distribution of substrate in preparing SiC conversiton layer on graphite substrate were investigated. The chemical reaction for formation of SiC conversion layer was occurred at substrate surface or below surface through SiC gas infiltration. It was supposed that the pore size distribution required for the sufficient SiO gas infiltration and the continuous chemical reaction during conversion process was in the range of 1.0∼10.0$\mu\textrm{m}$. In the stress analysis of SiC layer with finite element method (FEM), the residual stress distribution due to thermal mismatch was shown. However, the compressive stress was measured in SiC layer by X-ray diffraction, it was presumed that the residual stress distribution of SiC layer was mainly influenced by the constraining effect of interlayer between SiC layer and graphite substrate, and the densification behaviro and the grain growth in SiC conversion layer.

키워드

참고문헌

  1. Ceramics International v.18 The Effect of Boron Additive on the Oxidation Resistance of SiC-Protected Graphite T.M. Wu;W.C. Wei;S.E. Hsu
  2. J. of Mat. sci. v.31 Microstructure and Oxidation Resistance of SiC Coated Carbon-Carbon Composites Via Pressureless Reaction Sintering Chen-Chi M. Ma.;Nyan-Hwa Tai;Wen-Chi Chang;Huai-Te Chao
  3. SiC Ceramics Ⅱ-15 Silicon Carbide Ceramics of Tokai Konetsu K. Kurahashi;Y. Mizuuo;S. Somiya(ed.);Y. Inomata(ed.)
  4. Carbon-Carbon Materials and Composites High-Temperature Coatings on Carbon Fibers and Carbon-Carbon Composites J.E. Sheehan;J. D. Buckley(ed.);D. D. Edie. np(ed.)
  5. U.S. Patent No. 5,525,372 Method of Manufacturing Hybrid Fiber-reinforced Composites Nozzle Materials Sayles David C.
  6. J. Ceram. Soc. Jpn. v.103 no.5 Improvemmat of Oxidation Resistance of Carbon/Carbon Composites by the Multi-layer CVD Coating Technique T. Suemitsu;A. Takashima;H. Nishikawa
  7. An Introduction to the Finite Element Method J.N. Reddy
  8. The Finite Element Method (Basic Concepts and Applications) Darrell W. Pepper;Juan C. Heinrich
  9. J. Am. Ceram. Soc. v.73 no.8 Residual Stress in Alumina/Silicon Carbide [Whisker] Composites by X-ray Diffraction Alias Abuhasan;Chelleyan Balasingh;Paul Predecki
  10. Research Report in Materials Science Series No. 12 Mechanics of Microcrack Toughening in Ceramics Yen Fu;P.E. Evans(ed.)
  11. Effect of gradients in Multi-Axial Stress states on Residual stress Measurements with X-rays Metallurgical Transaction A v.14A no.2 I.C. Noyan;J.B. Cohen
  12. J. Kor. Ceram. Soc. no.12 Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method(Ⅰ) Y.H. Yun;S.C. Choi
  13. Proceedings of the 12th Japan-Korea Seminar on Ceramics Development of High Purity Silicon Carbide Block Satoru Nogami
  14. Materials and Manufacturing Process v.12 no.3 Properties of Coatings: Comparisons of Electroplated, Physical Vapor Deposited, Chemical Vapor Deposited and Plasma Sprayed Coatings J.W. Dini