Synthesis of Ultrafine LaAlO$_3$ Powders with Good Sinterability by Self-Sustaining Combustion Method Using (Glycine+Urea) Fuel

(Glycine+Urea) 혼합연료를 이요한 자발착화 연소반응법에 의한 우수한 소결성의 초미분체 LaAlO$_3$ 분말 합성

  • Nam, H.D. (Department of Inorganic Materials Engineering, Myongji University) ;
  • Choi, W.S. (Department of Inorganic Materials Engineering, Myongji University) ;
  • Lee, B.H. (Department of Inorganic Materials Engineering, Myongji University) ;
  • Park, S. (Department of Inorganic Materials Engineering, Myongji University)
  • 남희동 (명지대학교 무기재료공학과) ;
  • 최우성 (명지대학교 무기재료공학과) ;
  • 이병하 (명지대학교 무기재료공학과) ;
  • 박성 (명지대학교 무기재료공학과)
  • Published : 1999.02.01

Abstract

LaAlO3d single phase used as the butter layer on Si wafer for YBa2Cu3O7-$\delta$ superconductor application were prepared by solid state reaction method and by self-sustaining combustion process. The microstructure and crystallity of synthesiszed LaAlO3 powder studied using scanning electron microscope (SEM) and X-ray diffractometer(XRD), specific surface area and sintering characteristics fo powder were investigated by Brunauer-Emmett-Teller (BET) method and dilatometer respectively. In solid state reaction method, it is difficult to obtain LaAlO3 single phase up to 150$0^{\circ}C$ period. However, in self-sustaining combustion process, it is to easy to do it only $650^{\circ}C$. Based on the results of analysis of dilatometer it is easier to obtain high sintering density (98.87%) in self-sustaining combustion process than in the solid state reaction method. This reason is that the average particle size prepared by self-sustaining combustion process is nano crystal size and has high specific surface are value(56.54 $m^2$/g) compared with that by solid state reaction method. Also, LaAlO3 layer on the Si wafer has been achieved by screen printing and sintering method. Even though the sintering temperature is 130$0^{\circ}C$, the phenomena of silicon out diffusion in LaAlO3/Si interphase are not observed.

Si 기판위에 Ba2YCu3O7-$\delta$ 고온초전도체를 응용하기 위해 요구되는 buffer층으로 유망한 재료인 LaAlO3 단일상 분말을 고상반응법과 자발착한 연소반응법으로 제조하였다. 제조된 LaAlO3 분말의 입자형태와 결정상태는 scanning electron microscope (SEM)과 X-ray diffractometer (XRD)를 이용하여 분석하였다. 분말의 비표면적과 소결특성은 각각 Brunauer-Emmett-Teller(BET) 방법과 dilatometer를 측정하였다. 고상반응법으로 LaAlO3 분말을 제조할 때에는 하소온도를 150$0^{\circ}C$까지 높게 하여도 단일상을 얻는 것이 어려웠으나 자발착한 연소반응법에 의한 분말제조는 $650^{\circ}C$의 저온에서 하소하여도 쉽게 얻을 수 있었다. Dilatometer 측정을 통하여 분석해 보면, 고상반응법에 의한 분말보다 자발착한 연소반응법에 의한 분말로 제조된 소결체가 고상반응법에 의한 소결체에 비해 1.4배나 큰 소멸밀도(98.87%)를 가졌다. 이렇게 소결밀도에서 큰 차이가 나는 것은 자발착한 연소방법에 의한 분말의 평균 입자크기가 nano crystal size이고 비표면적 값(56.54 $m^2$/g)이 매우 크기 때문이다. 두가지 방법으로 제조된 분말을 이용, LaAlO3 layer를 스크린 프린팅과 소결법으로 Si 기판상에 제조하였으며 자발착한 연소합성법으로 제조된 분말은 110$0^{\circ}C$에서 우수한 소결특성을 나타내었다.

Keywords

References

  1. J. Mater. Res. v.7 no.7 Synchrotron x-ray Topography Studies of Twin Structures in Lanthanum Aluminate Single Crystals G.D. Yao;S. Y. Hou, Michael;J. M. Philips
  2. J. Appl. Phys. v.71 no.12 Oriented PbTiO₃ Films from Metalorganic Precursors Y. Wang;P. Zhang;B. Qu;W. Zhong
  3. Mater. Sci. Eng. v.B13 Laser Deposition of Y-Ba-Cu-O Single-crystal Thin Films on Different Substrates M. Bianconi;G. Bobbio;L. Correra;A. Lamagna;S. Nicoletti;M. Sanchez Balmaseda;V. Soncini
  4. Appl. Phys. Let. v.53 no.26 Low Loss Substrate for Epitaxial Growth of High-temperature Superconductor Thin Films R.W. Simon;C.E. Platt;A.E. Lee;G.S. Lee;K.P. Daly;M.S. Wire;J.A. Luine;M. Urbanik
  5. Appl. Phys. Lett. v.53 no.19 Lanthanum Allate Substrates for Epitaxial High-temperature Superconducting Thin Films R.L. Sandstorm;E.A. Giess;W.J. Gallagher;A. Segmuller;E.I. Copper;M.F. Chisholm;R.B. Laibowitz
  6. Appl. Phys. Lett. v.54 no.11 Epitaxial Films of $YBa_2Cu_3O_{7-δ}\;on\;NdGaO_3\;and\; SrTiO_3$Substrate Deposited by Laser Ablation G. Koren;A. Gupta;E.A. Giess;A. Segmuller;E.I.;R.B. Laibowitz
  7. Appl. Phys. Lett. v.51 no.21 Reproducible Technique for Fabrication of Thin Films of High Temperature Superconductors P.M. Mankiewich;J.H. Scofield;W.J. Skocpol;R.E. Howard;A.H. Dayem;E. Good
  8. J. Am. Ceram. Soc. v.74 no.2 Synthesis and Preparation of Lanthanum Aluminate Target for Radiofrequency Magnetron Sputtering G.Y. Sung;K.Y. Kang;S.C. Park
  9. Bull. Acad. Sci. USSR(Engl Transt.) v.5 no.May Phase Equilibrium in the Lanthanum Oxide-alumina System I.A. Bonder;N.V. Vinogrdova
  10. Am. Mineral. v.39 no.1;2 Structural Relations Among Double Oxides of Trivalent Elements M.L. Keith;R. Roy
  11. J. Res. Nail. Bur. Stand. Sect. Solid State Reactions Involving Oxides of Trivalent Cations S.J. Schneider;R.S. Roth;J.L. Waring
  12. Izv. Akad. Nauk SSSR, Neorg. Mater. v.2 no.9 Preparation of Lanthanum Aluminate by Coprecipitation A.M. Golob;T.N. Maidukova;T.F. Limar
  13. Mat. Res. Soc. Symp. Proc. v.249 Redox Effects in Self-sustaning Combustin Synthesis of Oxide Ceramic Powders L.A. Chick;G.D. Maupin;G.L. Graff;L.R. Pederson
  14. Ceramic Eng. & Science Proc. Synthesis of NanoCrystalline Alumina and Alumina-zirconia Composite by a Combustion Assisted Process S.B. Bhaduri;R. Radhakrishnan;D. Linch
  15. J. Mater. Synthesis and Processing v.4 no.6 Synthesis of Ultrafine NiO/8YSZ Composite Powders S.J. Kim;C.H Jung
  16. Combustion and flame v.40 A New Approach to Themochemical Calculations of Condensed Fuel-oxidizer Mixtures S.R. Jain;K.C. Adiga;V.R. Pai Verneker
  17. Yogyo Kyokaishi v.82 no.12 Phase Diagram of the System $Al_2O_3La_2O_3$ at Elevated Temperature M. Mizuno;R. Berjoan;J. Coutures;M. Foex
  18. Jpn. J. Appl. Phys. v.35 no.8 Preparation of $La_{0.84}Sr_{0.16}CrO_3$Powders by pH-controlled Glycine-nitrate Process H.C. Shin;K.L. Lee;S. Park;C.H. Jung;S.J. Kim
  19. Physical Chemistry for Metallurgists J. Mackowlak