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Numerical Analysis for Advection Equation Based on the Method of Moments
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Abstract

The method of moments, a Lagrangian scheme, considers the zeroth, first, and second moments of
the grid cell spatial distributions of the concentration and then advects the concentration by
maintaining conservation of the moments. The reasonable initial description of the first and second
moments as well as the mean concentration, the zeroth moments, in grid element is important in the
method of moments. In this study, the description methods of each initial moment are reviewed, and
the method of moments is extended to overcome the restrictions of Courant number. Its performance
is compared with those of available Eulerian and Lagrangian schemes. As the results, the method is
successfully extended to overcome the stability restriction and is an accurate scheme for the
advection simulation of concentration distribution, especially of which the gradient is steep. In
addition, the method is very promising scheme in terms of computational efficiency when the mixing
is confined in a relatively small region to the entire domain in two-dimensional problem.
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Q o

EAEY-L

AIERS Lagrangian "HORA AzpQ 2 delMe] Fxe] 2l digk 04 1} 22 ZRlES 18s)
7k BilEe] HFEAE FASHHA FRAE o[5S Akl Witk welr zh Axigao)el 02} ZHlE

at 7
3 s Wik ohdek 1) % 23} SIS o) i) 2] 949 A & agede
=7

s 7t RHEEY
27)gk A3EE AEsLD, 7)€ EAEYe] Courant o oist AMefzAS S183)7] 2l RHERS 7iMs)
Ack ZHEHY o3t Bo} AHE 8% Eulerian ¥ Lagrangian /]B‘OH A8 ®o] dile} vl 7HESS L
HERY A FHE %_’41'8}914. A 4 D"HE%A ifmiA ol WoJA| FrUt oh ?/101] M e

Al 74]*&*1 k’ﬂ 01’\1 Uﬂ—r E"Z*Ol ?i,oj_ viERITE
SAlRO] . ZHIER Lagrangian 2, 0|5, Courant =2 H|2f

* AA st ekl Eiyaha) dhalubg Sg
Doctoral Candidate, Depdrtmem of Civil Engineering, Graduate School, Yonsei University, Seoul 120- 749, Korea
*x  GAtety AV3EVE - Al wae

Professor, School of Civil, Urban, and Architectural Engineering, Yonsel University, Seoul 120-749, Korea
sex Tt ARBBY - AF TN Fas

Associate Professor, School of Civil, Urban, and Architectural Engineering, Yonsei University, Seoul 120-749, Korea

W32 2% 19994 4)] %



1. Introduction

Large efforts have been invested by many
researchers to develop appropriate numerical
schemes for the advection—diffusion equation.
These schemes are basically grouped into two
categories: the Eulerian and the Lagrangian.
Eulerian discretization methods for advective
transport suffer from troublesome numerical
sometimes
Thus,
repeatedly given to

errors, of which the magnitude

exceeds that of physical dispersion.

attention has  been
Lagrangian methods that appear to provide a
more natural approach to solutions of the
advection equation (Abbott and Basco, 1989).
The first-order Upwind approximation to the
advection problem tends to be overly diffusive
with the The QUICKEST(Leonard,

1979), a third-order Upwind scheme, provides

results.

better results, even if it produces over—- and

under-estimation in the region of steep
gradient, but causes some difficulties in the
region of boundary. Davis and Moore (1982)
generalized QUICKEST

dimensions

scheme to two
in which certain cross-difference
term was excluded, which required small time
step to minimize the error associated with the
These

Upwind

neglected second time derivative.

Eulerian schemes using the
differencing or first-order time differencing too
can suffer significant errors for
multidimensional problems, especially when the
velocity vector is at 45" to each coordinate
direction (Fletcher, 1991).

Holly and Preissmann (1977) developed a
semi-Lagrangian scheme that uses the method
of characteristics and a Hermite interpolation to
approximate concentrations between grid points.
This scheme is not conservative itself, and its
accuracy depends on the degree of conservation
of the flow field. It gives better results at a
Courant number of about 1.0. In the low

physical diffusion regions, it generates small

negative concentrations (Holly and Usseglio-
1984). Jun and Lee (1994a, 1994b)
simulated the longitudinal
dispersion equation by a split-operator method

Polatera,
successfully

based on forth-order and sixth-order Holly-
Preissmann scheme for advection term and by
a hybrid method based on Holly-Preissmann
scheme with fifth~degree Hermite interpolating
polynomial for advection term, respectively. Lee
(1995)
Eulerian-Lagrangian methods using Lagrangian

et al compared the performances of

interpolation scheme and  cubic spline
interpolation scheme for advection term with
those of Eulerian methods, Stone-Brian, and
QUICKEST

problems.

methods, in  one-dimensional

The method of moments, a Lagrangian
scheme, was developed by Egan and Mahoney
(1972) for determining atmospheric dispersion
This method
moments over the entire solution domain and

of pollutants. considers the

uses Lagrangian description for the time
evolution of the moments. The computational
efficiency of the method of moments depends

on the magnitude of the mixing region in the

computational domain. Since it maintains
subgrid scale resolution, the method of
moments is free of numerical oscillation but

suffers from some numerical dissipations when
complicated distributions are advected. In order
to reduce numerical dissipation, Pepper and
Long (1978) modified the method of moments
with a width correction technique to solve the
advection of a passive scalar. Pepper and
Baker (1980) used the method of moments in
atmosphere pollution transport. Nassiri  and
Babarutsi (1997) successfully used the method
to simulate the dye concentration in turbulent
recirculating flow generated in a shallow open
channel by a sudden widening of flow in the
transverse direction. The method of moments
considers the zeroth, first, and second central
moments of the grid cell spatial distributions of
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then advects the

concentration by maintaining conservation of

the concentration and
the moments. It is important to specify the
reasonable initial values of the first and second
moments as well as the zeroth moment, mean
concentration, in each element. In this study,
the description method of each initial moments
is reviewed. Since the method of moments by
1973,
Pepper and Baker, 1980; Nassiri and Babarutsi,
1997) is
limitation requires that the Courant number be

previous studies (Egan and Mahoney,

an explicit scheme, the stability
less than or equal to unity for each specific

direction. The subject research attempts to

extend the method of moments to overcome
such restrictions of the Courant number. The
performance of the method of moments is
compared with those of the Eulerian schemes
of first-order Upwind and QUICKEST,
forth—order

scheme for pure advection problems for one-

and
Lagrangian Holly -Preissmann

and two-dimensional problems.

2. Description of the Method of Moments
to Advection in Two-Dimensions

The concentration distribution due to pure

advection in constant-dqpth shallow water

flows is computed by solving the depth-
averaged mass transport equation  with
excepting diffusion term
oC |, o(UQO (Ve
=t + =0 ¢))
at dx dy
where C is concentration of a conserved
pollutant, and U and V are the depth-

averaged velocity components in the x- and
y~directions, respectively.

The formulation of the method of moments
The

moment specifies the mean concentration C,,.

involves the five parameters. zeroth

The two first moments F, and F, denote

the center of mass in the x- and y-
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directions with respect to the grid center. The
second moments, R, and R,, evaluated about
the center of mass define the radius of
gyration, or equivalently, the square root of the
variance, V?, in the x- and y-directions,
respectively. These relations are defined in x-
and y-directions as (Egan and Mahoney, 1972;

Nassiri and Babarutsi, 1997)

0.5 0.5
Cn = f70.5 f_0.5 Clx, ) dxdy (2)
_ 1 0.5 5
Fe = Ch f—o.s ~0.5 Cx, y) x dx dy (3a)
_ _l_ 0.5 0.5
F= Cn f—o.s f—o.s Cx, ¥) ydx dy (3b)

TR B A )
e = C. ffo.s f40_5 Clx, ) (x— F,)° dxdy
(4a)

1 0.5 0.5
Ri ~ Ca ffo.s f~0.5 Cx, 3) (y—Fy)dedy
(4b)

where x, » denote the relative displacements
of concentration within the cell from the center
of the cell and vary from -05 to +05
corresponding to the left- and right-hand
extreme boundaries of a cell. For the second
moment, however, Papper and Baker (1920)
used different relations defined as follows.

0.5 0.5
R = _éZ_ f_osf_og Clx, Y (x—F,)* dxdy
(5a)

0.5 0.5
B= & [ [, ) =F) axay

—0.5 J-0.
(5b)

For a rectangular distribution of length L,
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the second moment has the value L/V12.
Thus, a convenient scale of an arbitrary
distribution grid
R = V12V, which means that Eqgs. 5(a) and
5(b) are reasonable for the second moments. In
this study, comparison of the Eq. (5) with Eq.
(4) is carried out by numerical tests.
For the

distributions,

within a element is

simple rectangular concentration

rectangular mesh geometry, the

integrals can be readily evaluated by

summation for each grid element in terms of
the concentration distributions of the portions
newly advected for each

remaining and

successive time step. Fig. 1 illustrates the

scaling parameters involved in the advection of

a block-shape concentration distribution in one
time step.

The downwind transfer of concentration by
advection depends on the values of scaling

parameters, P, and P, , as follows:

P, = (F + y, + Ig" —0.5) (6a)

R
p, = R%y(Fy ot —0.5) (6b)

where y, and y, are the Courant numbers in

x— and y-directions, respectively, which are the
ratios of the advection distances per time step
to the grid element dimensions.

dx
Re
Ilv Cm(ﬂu,JH—L
|| == '—4 dy
(i)
-0.5 0.5
dx dx dx
j+2 * (1-R)Re|_RBR. _* | 4y
v ‘\\W/ BRy
(1—%@)1\’4’
j+1 + dy
vt
R:
R a
i R RI .t Udt a + dy
TR

i1

it+2

Fig. 1. Scaling Parameters used in the Advection of Block—-Shape Mass
Concentration from a Position within i, j cell to a Position
Partially within Four Adjacent Cells.
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In this study, the method of moment is
extended to overcome the stability restrictions
of Courant numbers. Consider the general case
of concentration distribution superposed on a
specified time

rectangular grid system of

interval A4t shown in Fig. 1. If the
concentration distribution is advected beyond
adjacent grid cells, the following relationship

holds

Udt/dx = B, + 7, (7a)

Vat/dy = B, + 7, (7b)

where B, and B, are the integer portion of

Courant numbers and ¥, and 7y, are the

decimal portion of Courant numbers in the x-
and vy -directions, respectively.

The zeroth through second moments at each
from  concentration

cell are  calculated

distributions advected from more than one
adjacent cell. The computational procedure then
which

calculation and

determines  the neighboring cells

contribute to the moment

compute the new values for each cell. For P,
<0 and P, <0, none of the concentrations are
advected into the downwind cell. If P, =1 and
P, =1, all concentrations are advected into the
downwind cell. For 0< P, <1 and 0< P, <1, the

contributions to the new concentrations at each
of the four elements sharing the concentration
after advection are given by

Comit,n = CL,P.(1-P) (8a)
Cowih w1 = CL,P.P, (8h)
Comuii = CL,(1=P,)P, (8c)
Con = CL,0-P)1Q—-P) 8d)

B2 W29 199948 44

where C, is the concentration at each of the

neighboring cells and itself after advection, the
subscripts m and n indicate the
computational points in each direction which

are defined as 7+ B, and j+ B,, respectively

and superscript T +1 denotes the values at
the new time step. The center and scaled
variance, F, and R,, of concentration

distribution advected downwind and remained
for two dimensional advection are determined
and P,,
using the following rules which follow those
derived for the
concentrations at each of the four elements:

from the scaling parameters, P,

contribution to the new

Fuolih,w = (PR, —1))2 (9a)
Fomit.n = (1 =R, [ ;+P,R,T )2 (9D
Fulil wer = (PR, —1)/2 (9c)
Fo b e = (P,R,T ,—1D)/2 (9d)

Fobhel = —R.T,+ P.R.T)/2 (e

Fothl = (PR, ,—1)/2 (9f)

Fawmn= (1-R.I;+PRT )2
Fary = (1= R+ PR, )/2 (9h)
Raxztrll,n = PxszT',j (10a)
R, .= (1—P)OR, T, (10b)
Ruwii nt1 = PiR.T, (10¢)
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Ryt w1 = PR, (10d)
Ryt = (1 —PIHR.T; (10e)
Rywuer = PyRT, (10f)
R.0 = (1=PJR,T; (10g)
R, = (1-PYR,T; (10n)

The computational procedure computes the
values for each cell which contributes to the
moment calculation and then computes the new
zeroth, first, and second moments for each cell.

cTHl = e, T (1D
RO = =t DCITFLTY a2
1,7
F = o GIVF L am)
1,7
(Rx ftl 2= C7+1 {anftl ax zT+;1 2
1,7
+12[ 2C, T (F T = F.TIO)
(13a)
(Ry 1T+]1 ' = {an 1T+]1 ay {+/1 2

C7+l

7
+12[ 2C, T (Fy 15 - F, D)
(13b)

3. Numerical Tests

Numerical tests are performed to evaluate
the accuracy and the effect of Courant number,
Cr, on the numerical solutions from the
method of moments and other three schemes,

such as the first-order Upwind, QUICKEST

104

and forth-order Holly-Preissmann, in one- and
flow fields.
used to assess the accuracy of numerical

two-dimensional Error measures

solutions from those methods are the mass
conservation ratio, the maximum and minimum
predicted concentrations and normalized sum

error, L, defined for two-dimensional as

231 C—Ceyl
iﬁ;: | Ce;;l

L1:

(14)

where C is a numerical solution, Ce is an

exact solution, and 7 and j are computational

node in the domainl # X m].
3.1 Advection in one—dimensional flow

In this section the results of a comparative
study is presented, which focuses on the

performance of four numerical schemes

including the extended method of moments and
the description methods of each initial moment

in the method when applied to the prediction of

constant velocity advection of one-dimensional
block and sine-squared wave.

At ¢ = 0, the initial condition is prescribed

as
100 0 < x <154
Clx, t=0)={ 100sin’(zx/20/4x) 50dx <x <704x
0 otherwise

(15)

which consists of a block and a sine-squared
wave of widths 154dx and 20 dx, respectively.
The flow velocity U= 05my/s and Jdx= 1m,
dt= 1 s, which yields Courant number Cr=
0.5. In addition, 4t = 5 s ( Cr= 25) is applied
to the extended method of moments to evaluate
its performance. The exact and numerical
solutions using various numerical schemes are
compared at time 7T = 300 s.

The exact and the predicted solutions using
initial

the method of moments based on
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description Eq. (4) and Eq. (5) are shown in
Fig. 2(d) 2(e), respectively.
Comparison of Figs. 2(d) and 2(e) shows that
results based on Eq. (5) is

advection  simulation. And
solutions using the first-order Upwind and
QUICKEST schemes are shown in Fig. 2(a)
and Fig. 2(b), respectively. The method of
moments produces better accuracy for both the

and Fig.

the numerical

promising  for

block and the sine-squared wave advection.

The solution using QUICKEST scheme shows
over- and under-estimation in the region of

steep gradients in the block-shaped
concentration profile. This can be also seen in
the  solutions using forth-order  Holly-

Preissmann scheme shown in Fig. 2(c), while
the method of moments produces quite accurate
solutions  without spurious oscillations, as

shown in Fig. 2(e). In the case of sine-squared

wave advection, the QUICKEST scheme
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Fig. 2. Analytical and Predicted Solutions Using Various Numerical Schemes in 1D Problem:
(a) First-Order Upwind, C»=0.5; (b) QUICKEST, C»=0.5; (c) Forth-Order Holly-
Preissmann, C»=0.5; (d) Method of Moments(Eq. 4), C» =0.5; (e) Method of
Moments(Eq. 5), C»=0.5; (f) Method of Moments(Eq. 5), C»=2.5
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Table 1. Comparison of Numerical Solutions Using Various Numerical Schemes for
One-Dimensional Block-Shaped Wave Advection

Numerical Scheme Cain C rmax L, /2,
First-order Upwind ( Cr=0.5) 0.00000 59.76492 0.87910 0.9667
QUICKEST ( C»=0.5) -5.25069 106.08060 0.25840 0.9833
Holly and Preissmann ( C» =0.5) ~5.63550 107.35960 0.14935 0.9667
Method of Moments ( Cr =0.5, Eq. 4) 0.00000 101.94710 0.16832 0.9667
Method of Moments ( Cr =05, Eq. 5) 0.00000 100.00000 0.00000 1.0000
Method of Moments ( Cr =25, Eq. 5) 0.00000 100.00000 0.00000 1.0000

Table 2. Comparison of Numerical Solutions Using Various Numerical Schemes for
One-Dimensional Sine~Squared Wave Advection

Numerical Scheme C min C ax L, >Cl >,
First-order Upwind ( C» =0.5) 0.00000 4241051 0.84329 1.0000
QUICKEST ( Cr=0.5) -1.97905 96.56194 0.07093 1.0000
Holly and Preissmann ( Cr =0.5) -0.65464 99.25913 0.01499 1.0000
Method of Moments ( Cr =05, Eq. 4) 0.00000 99.17655 0.19918 1.0000
Method of Moments ( Cr=0.5, Eq. 5) 0.00000 99.60134 0.02741 1.0000
Method of Moments ( Cr =25, Eq. 5) 0.00000 99.92152 0.01245 1.0000

produces some dissipation and oscillation, while
and forth—order
Holly-Preissmann scheme give good agreement

both method of moments

with exact solution. The predicted solutions
using the extended method of moments at
Courant number 2.5 shown in Fig. 2(f) produce
also good agreement with the exact solution.
Table 1 and 2 give results of four error
measures for each numerical scheme for the
individual block-shaped wave advection and the
sine-squared wave advection, respectively. The
used error measures are the minimum predicted
predicted

concentration, the maximum

concentration, standardized sum norm, L;, and

the mass conservation ratio, respectively. The

results for block-shaped wave advection
demonstrate that the method of moments
including the extended version based on Eaq.
(5) is superior to other schemes for all error
in Table 1,

sine-squared wave advection show that with

measures while the results for
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the exception of the Eulerian schemes, first—
order Upwind and QUICKEST schemes, overall
Lagrangian schemes are comparable in Table 2.
After all,
method of moments based on Eq. (5) is more
accurate than that based on Eq. (4). This
method is superior to other schemes, especially

the results demonstrate that the

when the gradient of concentration distribution
is steep, and is successfully extended to
overcome the restriction of Courant number. In
the one-dimensional advection simulation, the
of computational time

efficiency in terms

makes no significant distinction between

various schemes.

3.2 Advection in two—dimensional flow

The test problem involves the pure advection
of a rectangular parallelpiped in a uniform
velocity field. The parallelepiped has a width
104x %X 104x and is centered at (6, 6) in a

domain[70 X70] which has a uniform grid size,

ERKERBPERLE



Ax =4y = 1 m. Its height is 100 units and it The initial and final locations

the

is advected in a uniform velocity field, directed concentration profile are shown in Figs. 3(a)

at a 45° angle with U =V = 0Ilm/s to the and 3(b), respectively. The

predicted

location (38,3R) after T = 320 s. concentration profiles for the problem using the

i
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e
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e
e

e
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e
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Fig. 3. Initial, Exact, and Predicted Solutions Using Various Numerical
Schemes for 2D Problem: (a) Initial Condition; (b) Exact
Solution; (¢} First-Order Upwind, Cr =0.2; (d) QUICKEST, Cr=0.2;
{(e) Forth-Order Holly-Preissmann, C» =0.2; (f) Method of
Moments(Eq. 4), C»=0.2; (g) Method of Moments(Eq. 5), Cr=02;
(h) Method of Moments(Eq. 5), C»=16
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Table 3. Comparison of Numerical Solutions and Computational Time Requirements Using
Various Numerical Schemes for Two—Dimensional Problem

Numerical Scheme Cmin C max L, 2.C/ 23C, | CPU Time

First-order Upwind ( Cr =0.2) 0.00000 53.05687 1.17714 1.0000 1.00
QUICKEST ( Cr=0.2) -47.48871 130.77360 0.85834 1.0018 3.11

Holly and Preissmann ( C»=0.2) -19.90277 111.71880 0.33194 1.0000 10.62
Method of Moments ( Cr=0.2, Eq. 4 0.00000 106.55810 0.01734 1.0000 1.53
Method of Moments ( C»=0.2, Eq. 5) 0.00000 100.00000 0.00000 1.0000 1.50
Method of Moments ( Cr =16, Eq. b) 0.00000 100.00000 0.00000 1.0000 0.23

first-order Upwind, QUICKEST, forth-order method of moments including the extended

Holly-Preissmann schemes and the method of
moments base on Egs. (4) and Eq. (5) are
shown in Figs. 3(c), 3(d), 3(e), 3(H) and 3(g),

respectively, where the Courant numbers Cr,
= Cry,= 0.2 in each direction. In addition, Fig.
3(h) shows the predicted concentration profile
for the
method of moments at Cr,=Cr,= 1.6. The

same problem using the extended

minimum, maximum, ZL; norm, and the
conservation ratio are given in Table 3 for
each scheme. The predicted concentration

profile using the first-order Upwind scheme
shown Fig. 3(c) is overly diffusive with the
flatting of concentration peak. The QUICKEST
scheme overestimates the concentration peak
by 31% and generates negative concentration
by about 47% of the initial peak (see Table 3)
with severe spurious oscillations as shown in
Fig. 3(d). The accuracy of the used
QUICKEST scheme (Davis and Moore, 1982)
with neglecting some spatial cross-derivative
improved by including certain
that appear the
consistent formulation of the multidimensional
frame work (Leonard, 1988). The forth-order
Holly-Preissmann scheme also overestimates

term can be

cross—difference terms in

the concentration by about 129 and generates
non-physical negative concentration by 20% of
the initial peak at the same time as shown in
Fig 3(e) and Table 3. The results for the
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(5) shown in Figs. (2g)
3 demonstrate that the
is

version based on Eqg.
and (2h), and Table
method of moments

superior to other

schemes for all error measure and is also
extended

formulation, as mentioned in one-dimensional

successfully in  two-dimensional
test.

The ratio of computational time requirements
to the first-order Upwind scheme for each-
scheme shows that the method of moments is
very efficient for the given two-dimensional
problem, as shown in Table 3. The Holly-
Preissmann scheme requires greater
computational effort because the concentration
C and its three derivatives 0C/dx, 9C/dy,

and 3°C/dxdy are advected. The method of
of the
concentration only in the grid cells which
superposed by Its
computational efficiency, therefore, depends on
in the
that the
efficiency of the method of moments is high in

moments requires the computation

any concentration.
the magnitude of the mixing region

computational domain. It means
flow where the mixing is confined to a small
region of the domain and low in flows where

the mixing is extended in the whole domain.
4. Conclusions

In this study,
Lagrangian scheme, is extended to overcome

the method of moments, a
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the restrictions of the Courant number. The
method is applied to the prediction of the pure
advection of one-dimensional block and sine-
squared wave, and a rectangular parallelpiped
and two-
fields,
respectively. Its performance is compared with

concentration distribution in one-

dimensional uniform flow velocity
those of the Eulerian schemes of first-order
and QUICKEST,
forth-order Holly-Preissmann scheme.

The

demonstrate that the method of moments is an

Upwind and Lagrangian

results from the numerical tests
accurate scheme for the advection simulation of
concentration distribution, especially of which
the gradient is steep, and is very promising
scheme in terms of computational efficiency
when the mixing is confined in a relatively
small region to the entire domain in
two-dimensional problem. The numerical tests
also show that the method of moments is
successfully extended to overcome the stability
restriction of the Courant number.

Since the method of moments considers the
zeroth, first, and second central moments of
the concentration distribution, the reasonable

description of each initial moment in grid
elements is required. For the initial values of
the second moment, it is theoretically
reasonable to use Eq. (5) proposed by Pepper
and Baker(1980), of which the

performance is also identified by the numerical

superior

tests.

In a fractional step algorithm for advection-
diffusion equation the method of moments is
easily extended with including an additional
of the first and

second moments after diffusion simulation at

term for the conservation

the expense of some computational efficiency.

The extension of the method in three-
dimension is also straightforward.
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