Kimchi Quality Kinetics during Isothermal and Nonisothermal Fermentation Conditions

  • Published : 1999.12.01

Abstract

This study was conducted to develop the fermentation kinetic modeling for the prediction of pH and acidity changes in kimchi at isothermal and nonisothermal fermentation temperatures(0~15$^{\circ}C$) and salt concentrations(1.5~4.0%) using the traditional two-step method and alternative one-step method. The calculations of the two-step method of pH and acidity change during fermentation followed the pattern of the first order and zero order, respectively. The reaction rate constant of pH by the first order was increased from 0.008 {TEX}$day^{-1}${/TEX} to 0.017 {TEX}$day^{-1}${/TEX} by increasing the temperature from $0^{\circ}C$ to 15$^{\circ}C$ at 2.75% of salt concentration, and was decreased from 0.013 {TEX}$day^{-1}${/TEX} to 0.010 {TEX}$day^{-1}${/TEX} by increasing the salt concentration from 1.5% to 4.0% at 5$^{\circ}C$. For the pH and acidity of Kimchi, the zero order had a higher correlation than the first order to the estimate of the kinetics parameters by the one-step method. The {TEX}$E_{a}${/TEX} ranges of pH and acidity were 61.057~66.086 and 62.417~68.772 kJ/mole with different temperatures and salt concentrations. This one-step method had smaller and more realistic estimates of error(p〈0.05). The effective temperatures, {TEX}$T_{eff}${/TEX}, with 0~15$^{\circ}C$ of square function type of 12 hr intervals were 12.85, 11.48 and 12.46$^{\circ}C$ as increasing the salt concentration, 1.50, 2.75 and 4.00%, respectively. The {TEX}$T_{eff}${/TEX} were higher values than the mean temperature(7.5$^{\circ}C$).

Keywords