Distribution of Indicator Organisms and Influence of Storage Temperature and Period in Commercial Plant Food

시판 식물성 식품의 오염지표세균 분포 및 저장온도, 기간별 오염지표세균의 변화

  • 이용욱 (서울대학교 보건대학원) ;
  • 박석기 (서울특별시 보건환경연구원)
  • Published : 1999.03.01

Abstract

There were few data for the distribution of the indicator organisms in the commercial plant foods, and for the normal flora and for the foodborne agents within the country. First of all it must be investigated the distribution of the indicator organisms. And also it is very important to prepare the sanitation criteria for the plant foods through the microbiological examination and the investigation of tendency to change of the indicator organisms according to the storage temperature and period. The average number of total viable counts for grains was 2.9$\times$105/g, psychrophilic bacteria 2.9$\times$105/g, heterotrophic bacteria 3.1$\times$105/g, heat-resistant bacteria 2.1$\times$103/g, Pseudomonas aeruginosa 23/g. That for beans was 6.3$\times$102/g, psychrophile 34/g, heterotroph 1.7$\times$102/g. That for sesames was 1.4$\times$105/g, coliform 350/g, psychrophile 7.4$\times$104/g, heterotroph 5.8$\times$104/g, Pseud. aeruginosa 2.3$\times$103/g. heat-resistant bacteria 150/g. That for potatoes was 2.0$\times$107/g, coliform 5.0$\times$104/g, psychrophile 1.8$\times$107, heterotroph 1.4$\times$107/g, heat-resistant bacteria 3.3$\times$104/, Staphylococcus 2.7$\times$105/g, fecal streptococcus 4.5$\times$103/g, Pseud. aeruginosa 7.0$\times$103/g. That for mushrooms was 1.2$\times$108/g, psychrophile 9.4$\times$107/g, heterotroph 1.0$\times$109/g, heat-resistant bacteria 1.6$\times$105/g, Pseud. aeruginosa 1.3$\times$103/g. That for vegetables was 5.9$\times$1011/g, coliform 1.8$\times$106g/, Staphylococcus 1.1$\times$1012/g, heterotroph 8.4$\times$1011/g, heat-resistant bacteria 7.6$\times$106/g, Staphylococcus 1.1$\times$107/g, fecal streptococcus 1.1$\times$104/g, Pseud. aerugniosa 5.2$\times$104/g. That for nuts 3.9$\times$104/g, coliform 3.9$\times$103/g, psychrophile 4.0$\times$104/g, heterotroph 3.2$\times$104/g, heat-resistant bacteria 400/g. In commercial grains and beans, SPC, psychrophile, heterotroph and heat-resistant bacteria stored at 1$0^{\circ}C$, 2$0^{\circ}C$, 3$0^{\circ}C$ were constant. Staphylococcus, coliform, Pseud. aeruginosa were decreased a little n grains, but were not detected in beans. In mushrooms, all indicator organisms were increased as time goes on and were increased rapidly at 2$0^{\circ}C$. In sesames, coliform was not detected at all temperature. psychrophile was increased for 7 days, the others were constant. In potatoes, SPC, psychrophile, heat-resistant bacteria, heterotroph had a tendency to increase and the others were constant. In vegetables, indicator organisms were had a tendency to increase, psychrophile, heterotroph were rapidly increased after 7 days. In nuts, SPC, coliform, psychrophile heterotroph, heat-resistant bacteria, Pseud. aeruginosa were constant, staphylococcus and fecal streptococcus were not detected.

Keywords