Aging Effects in the Two-phase Intermetallic compounds Based on Cr-doped $\textrm{Ll}_2\textrm{Al}_3\textrm{Ti}$

Cr 첨가 $\textrm{Ll}_2\textrm{Al}_3\textrm{Ti}$기 2상 금속간화합물의 시효처리 효과

  • Lee, Jae-Gyeong (Dept. of Matls. Sci. & Eng., KAIST, Jointly Appointed at the Cater for Advanced Aerospace Materials, POSTECH) ;
  • Park, Jeong-Yong (Dept. of Matls. Sci. & Eng., KAIST, Jointly Appointed at the Cater for Advanced Aerospace Materials, POSTECH) ;
  • O, Myeong-Hun (Dept. of Matls. Sci. & Eng.,, Kumoh National University fo Technology) ;
  • Wi, Dang-Mun (Dept. of Matls. Sci. & Eng., KAIST, Jointly Appointed at the Cater for Advanced Aerospace Materials, POSTECH)
  • 이재경 (한국과학기술원 재료공학과, 항공재료연구센터) ;
  • 박정용 (한국과학기술원 재료공학과, 항공재료연구센터) ;
  • 오명훈 (금오공과대학교 신소재시스템공학부) ;
  • 위당문 (한국과학기술원 재료공학과, 항공재료연구센터)
  • Published : 1999.10.01

Abstract

Two-phase Al-21Ti-23Cr alloy containing 20 vol.% $\textrm{Cr}_{2}\textrm{Al}$ as a second phase in the $Ll_2$ matrix is located in the two- phase region of the Al- Ti- Cr phase diagram at $1150^{\circ}C$, while in the three-phase region at $1000^{\circ}C$. Based on this result, the mechanical properties of the A1-21Ti-23Cr alloy were enhanced through the refined precipitation of the third phase in the $Ll_2$ matrix by aging the alloy below $1000^{\circ}C$. It was observed that a several ,m of the third phase precipitated in the $Ll_2$ matrix through aging at $800^{\circ}C$ and $1000^{\circ}C$, but the precipitation was not observed below $600^{\circ}C$. Furthermore, the third phase was more finely precipitated at $800^{\circ}C$ than at $1000^{\circ}C$. Although the third phase precipitated at $800^{\circ}C$ and at $1000^{\circ}C$, the compressive yield strength increased rapidly at $800^{\circ}C$ only. This is probably attributable to the refined precipitation of the third phase in the $Ll_2$ matrix. It is expected that the precipitation of the third phase. which was confirmed to be the TiAlCr phase, improves the mechanical properties by preventing crack propagation in the $Ll_2$ matrix.

$Ll_2$기지에 20 vol.% $\textrm{Cr}_{2}\textrm{Al}$이 석출된 Al-21Ti-23Cr 2상합금은 $1150^{\circ}C$에서는 2상영역에 위치하지만 $1000^{\circ}C$에서는 3상영역에 위치한다. 이러한 점에 착안하여 본 연구에서는 Al-21Ti-23Cr 2상합금의 시효처리시 $800^{\circ}C$$1000^{\circ}C$이하에서 시효처리하여 $Ll_2$기지에 제3상을 미세하게 석출시켜, 기계적성질을 개선하고자 하였다. Al-21Ti-23Cr 2상합금의 시효처리시 $800^{\circ}C$$1000^{\circ}C$에서는 $Ll_2$기지부분에 수 $\mu\textrm{m}$ 크기의 제3상이 다량 석출되지만 $600^{\circ}C$이하에서는 제3상이 석출이 관찰되지 않았으며, 제3상의 석출형태는 $1000^{\circ}C$보다 $800^{\circ}C$에서 시효처리할 경우 더욱 미세하게 분포하는 것으로 확인되었다. 시효온도 상승에 따른 Al-21Ti-23Cr 2상합금의 항복강도는 $800^{\circ}C$에서 급격히 증가 후 다시 급격히 감소하는경향을 나타냈으며, 이러한 항복강도의 급격한 증가는 $Ll_2$기지 부분에 수 $\mu\textrm{m}$ 크기의 미세한 제3상이 다량 석출되기 때문에 나타나는 현상으로 판단된다. Al-21Ti-23Cr 2상합금의 시효처리시 $Ll_2$기지에 석출되는 제3상은 TiAlCr으로 확인되엇으며, 이러한 TiAlCr 석출상의 이용은 $Ll_2$기지의 균열전파에 대한 저항성를 향상시켜 합금의 기계적성질의 개선에 매우 효과적일 것으로 판단된다.

Keywords

References

  1. J. Mater. Sci. v.24 Y.Umakoshi;M.Yamaguchi;T.Sakagami;T.Yamane
  2. Intermetallic Compounds v.2 M.Yamaguchi;H.Inui;J.H.Westbrook(ed.);R.L.Fleischer(ed.)
  3. Int. Mater. Rev. v.35 K.S.Kumar
  4. Kor. J. Mater. Res. v.4 J.Y.Park;M.H.Oh;D.M.Wee;S.Miura;Y.Mishima
  5. Scripta Metall. Mater. v.25 K.Hirukawa;H.Mabuchi;Y.Nakayama
  6. J. Mater. Res. v.4 E.P.George;W.D.Porter;H.M.Henson;W.C.Oliver;B.F.Oliver
  7. ISIJ Int. v.31 E.P.George;D.P.Pope;C.L.Fu;J.H.Schneibel
  8. Scripta Metall. Mater. v.36 J.Y.Park;M.H.Oh;D.M.Wee;S.Miura;Y.Mishima
  9. Gamma Titanium Aluminides J.Y.Park;M.H.Oh;D.M.Wee;S.Miura;Y.Mishima;Y.W.Kim(ed.);R.Wagner(ed.);M.Yamaguchi(ed.)
  10. J. Kor. Inst. Met. & Mater. v.36 J.Y.Park;M.H.Oh;D.M.Wee
  11. Intermetallics v.1 Y.Nakayama;H.Mabuchi
  12. Structural Intermetallics K.S.Kumar;R.Darolia(ed.);J.J.Lewandowski(ed.);C.T.Liu(ed.);P.L.Martin(ed.);D.B.Miracle(ed.);M.V.Nathal(ed.)
  13. Scripta Metall. Mater. v.32 M.P.Brady;J.L.Smialek;F.Terepka
  14. J. Mater. Res. v.9 J.N.Klansky;J.P.Nic;D.E.Mikkola