Characterization of B-doped a-SiC:H Thin Films Grown by Plasma-Enhanced Chemical Vapor Deposition

플라즈마 화학증착법으로 제조된 B-doped a-SiC:H 박막의 물성

  • Kim, Hyeon-Cheol (School of Materials and Metallurgical Engineering, University of Ulsan) ;
  • Sin, Hyeok-Jae (School of Materials and Metallurgical Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials and Metallurgical Engineering, University of Ulsan)
  • 김현철 (울산대학교 재료금속공학부) ;
  • 신혁재 (울산대학교 재료금속공학부) ;
  • 이재신 (울산대학교 재료금속공학부)
  • Published : 1999.10.01

Abstract

B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4$, $CH_4$ and $B_2H_6$. Microstructures and chemical properties of a-SiC:H films grown with varing the volume ratio of $CH_4$ to $SiH_4$ were characterized with various analysis methods including scanning electron microscopy(SEM), X-ray diffractometry(XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy. X-ray photoelectron spectroscopy(XPS), UV absorption spectroscopy and photoconductivity measurements. While Si:H films grown without $CH_4$ showed amorphous state, the addition of $CH_4$ during deposition enhanced the development of a microcrystalline phase. By introducing C atoms into the film, Si-Si and Si--$\textrm{H}_{n}$ bonds of a -Si:H films were gradually replaced by Si-C, C-C, and Si--$\textrm{C}_{n}\textrm{H}_{m}$ bonds. Consequently, the electrical resistivity and optical bandgap of a-SiC:H films were increased with the C concentration in the film.

$SiH_4$, $CH_4$, $B_2H_6$ 혼합기체를 이용하여 플라즈마 화학증착법으로 탄화실리콘 (a-SiC:H) 박막을 증착하였다. 증착중에 혼합기체중의$CH_4$농도 ($CH_4/CH_4+SiH_4$)를 변화시켜 얻은 박막의 물성을 SEM, XRD, Raman 분광법, FTIR, XPS, 광흡수도와 광전도도 분석을 통하여 살펴보았다. $SiH_4$기체만 이용하여 증착한 Si:H 박막은 비정질상태를 나타내었으나, $CH_4$가 첨가됨에 따라 실리콘 박막의 Si-$\textrm{H}_{n}$(n은 정수) 결합기가 Si-$\textrm{C}_{n}\textrm{H}_{m}$ (n,m은 정수) 형태의 결합기로 변화되었으며, 박막내 수소함량은 $CH_4$농도가 0~0.8의 범위에서 증가함에 따라 30~45% 범위에서 증가하였다. 반응기체중의 $CH_4$농도의 증가에 따라 박막 내의 탄소 농도가 증가함을 확인하였으며, 이에 따라 막의 전기비저항과 광학적밴드갭 역시 증가하였다.

Keywords

References

  1. Philos. Mag. v.35 D.A.Anderson;W.E.Spear
  2. J. Non-Cryst. Solids v.97-98 D.Kruangam;T.Toyama;Y.Hattori;M.Deguchi;H.Okamoto;Y.Hamakaya
  3. Appl. Phys. Lett. v.39 Y.Tawada;H.Okamoto;Y.Hamakawa
  4. Proc. 5th Int. Photovoltaic Sci. and Eng. Conf. H.Sannomiya;S.Moriuchi;Y.Inoue;K.Nomoto;A.Yokota;M.Itoh;Y.Nakata;T.Tsuji
  5. J. Appl. Phys. v.71 M.N.Carrendo;I.Pereyra;M.C.A.Fantani;H.Takahashi;R.Landers
  6. Proc. Mat. Res. Soc. Symp. v.219 C.Wang;G.Lucvsky;R.J.Nemanichi
  7. J. Appl. Phys. v.72 F.Demichelis;C.F.Pirri;E.Tresso
  8. Philos. Mag. v.B62 S.E.Hicks;A.G.Fitzgerald;S.H.Baker;T.J.Dines
  9. J. Non-cryst. Solids v.97-98 J.Sotiropoulos;G.Weiser
  10. J. Appl. Phys. v.25 T.Ichimura;T.Ihara
  11. Semiconductor measurements and instrumentation W.R.Runyun
  12. Solid State Comm. v.48 Y.Inoue;S.Nakashima;A.Mitsuchi;S.Tabata;S.Tsuboi
  13. J. Non-Cryst. Solids v.78-84 G.Morell;R.S.Katiyar;S.Z.Weisz;I.Balberg
  14. J. Appl. Phys. v.73 D.M.Bhusari;S.T.Kshirsager
  15. J. Appl. Phys. v.51 A.Guivarchi;J.Richard;M.Lecontellec;E.Ligeon;J.Fontenile
  16. Thin Solid Films v.117 J.Sarai;Y.Fujii;M.Yosimoto;K.Yamazeo;H.Matunami
  17. J. Appl. Phys. v.81 W.K.Choi;L.J.Han;F.L.Loo
  18. Thin Solid Films v.209 J.Tyczkowski;E.Odrobina;P.Kazimierski;R.Baessler;A.Kisiel;N.Zemu
  19. Amorphous and Crystalline Silicon Carbide v.77 S.Akita;K.Wakita;Y.Nakayama;T.Kayamura
  20. Fundamentals of Surface and Thin Film Analysis Leonard C. Feldman;James W. Mayer