봉제속도에 따른 봉합강도에 관한 연구
김정진 · 장정대
부산대학교 의류학과

A Study on Seam Strength according to Sewing Speed
Jeong-Jin Kim · Jeong-Dae Jang

Dept. of Clothing and Textiles, Graduate School of Pusan National University
(1999. 5. 14 감수)

Abstract

This study has investigated the relation between the sewing speed and seam breaking strength applied perpendicular to the seam direction. Breaking strength, efficiency, breaking mode of seams were examined under various sewing conditions using three kinds of sewing threads and four kinds of fabrics.

The results obtained are as follows:

1. According to the increase in sewing speed, seam strength was remarkably decreased. Seam strength and its loss difference were shown variously as threads and fabrics were mixed.
2. In case of fabrics with higher strength, seam strength showed higher. And the seam strength was determined by the loop strength.
3. In case of fabrics with lower strength, seam strength and its difference for every sample showed lower. So the strength of fabrics dominated the seam strength than those of threads.
4. In the experiment using various fabrics and sewing threads, there was a type of thread appropriate to each fabric. Fabrics and threads which have similar physical properties were shown proper seam efficiency.
5. The breaking mode was different for every sample that was tested.

Key words: seam strength, sewing speed, sewability: 봉합강도, 봉제속도, 가봉성

I. 서 례

봉합강도는 속기를 인상에서 파란색 때의 강도를 말하며, 봉제속도의 가봉성을 평가하는 중요한 요소로 봉제 소재와 바느질 기술의 양쪽이 관계한다. 봉합강도에 영향을 주는 인자로는 적질의 종류, 봉사 강도, 스타치 밀도, 속기 형태, 봉합 형식 등이 있고, 바늘의 굽기나 재봉기의 화채속도, 봉사정리등도 영향을 줄다. 이러한 많은 인자 가운데서 생산성 향상과 간밀한 관련이 있는 재봉기 화채의 고속화는 봉합강도에 미치는 영향이 크고, 합성섬유 같은 경우, 직물의 구성과 적절한 속기 손순으로 봉합강도의 제한을 가져오기도 한다. 봉제라는 공정이 봉사와 적물과 바늘의 이동이 이루어지는 마찰로 인해 피로를 받는 공정이기 때문에 고속봉제기수록 그 마찰이 커져서 속기가 받는 피로가 커질 것으로 예상되므로, 봉제속도가 상승함수록 봉합강도가 어느 정도 저하
양상을 보이는지 연구할 필요성이 있다. 이러한 연구를 위해서, 직물과 봉사가 받는 파로를 봉함
속도 고속화와 함께 예측하여 소비과학적인 측면과 결합한다면, 내구성과 함께 실미성, 난이도 소비자
만족도까지 향상시키길 수 있을 것이다.

봉합강도에 관한 기존의 선행연구는 송기 방향에
대해 수직으로 인장의 경우의 봉합강도1, 3, 4, 수봉의
봉합강도5, 재봉기와 수봉의 봉합강도 비교5, 7, 바이
어스 각도의 봉합강도8, 9, 10, 11, 12에 관한 연구가 있다. 그러
나, 봉제속도가 증가함에 따라 어느 정도 봉합강도
의 저하를 가지는가에 대하여 아직까지 정량적인
연구는 없고, 직물과 봉사가 봉합강도에 어떠한 영
향을 주는가에 관한 연구도 단편적이거나 미비한
살이이다.

따라서, 직물과 봉사의 조합을 다르게 하여 봉제
속도에 따른 봉합강도 저하를 정량적으로 조사하여,
봉제속도 증가에 따른 봉합강도 손실을 연구함으로
서, 생산성 향상을 위해 필수적인 봉제의 고속화시
대에 부합하여, 송기가 받는 파로를 줄이는 방법에
대한 기초자료를 얻고자 하였다.

II. 실험

2.1 직물

실험에 사용한 시료는 면, 폴리에스테르, 레이온,
텐셀이 있고 면, 폴리에스테르, 레이온은 KS K
0905에 규정된 표준 백포를 사용하였고, 텐셀은 정련 후 바
이오 가공을 거친 직물을 사용하였다.

시료의 측정은 Table 1과 같다.

2.2 재봉사

실험에는 일반적으로 많이 이용되는 면사, 폴리에
스테르 필라멘트사, 폴리에스테르 방적사를 사용하
었다.

봉사의 측정은 Table 2와 같다.

2.3 재단

봉제 시각과 끝부분에 봉제속도와 스티치 밀도의
증감을 고려하여 2.5cm씩 여유를 더하여 경사방
향 15cm, 위사방향 9cm로 재단하였다. 봉제후에는 봉
함된 시험 포의 단원이 경사방향 10cm, 위사방향 16
cm가 되도록 다시 재단하였다.

2.4 봉제

봉제조건은 다음과 같다.
1) 재봉기 : DB2—B716—407ABZ, DC MOTOR
 MD—813A, Brother
2) 재봉석 : DB×1 #9 (Organ)
3) 스티치, 송기 형태 : LI2—301, SSA—1
4) 스티치 밀도 : 11 stitches/inch

<table>
<thead>
<tr>
<th>Table 1. Characteristics of fabrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>cotton</td>
</tr>
<tr>
<td>polyester</td>
</tr>
<tr>
<td>rayon</td>
</tr>
<tr>
<td>tencel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Characteristics of sewing threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>cotton 100%(spun)</td>
</tr>
<tr>
<td>polyester 100%(fill)</td>
</tr>
<tr>
<td>polyester 100%(spun)</td>
</tr>
</tbody>
</table>
5) 봉사장력 (bobbin/upper) : 20/170 (cotton, polyester spun), 20/130 (polyester fill)
6) 봉제속도 : 1500, 2000, 2500, 3000, 3500, 4000 rpm
7) 노무발 종류 : General press foot

봉사장력으로 인한 오차를 줄이기 위해 윗실장력 올고정시키고 실험하였기 때문에, 빌라멘트사와 방적시간의 마찰계수로 인해 윗실장력값에 차이가 있었다.

노무발압력과 봉사장력은 Push Pull Tester MP-3 (Attonic,マルショウ製作所, JAPAN)로 측정하였으며, 소정의 봉제속도 변화는 제봉기에 부착된 DC motor controller로 하였고, 회전수(속도)는 Digital Hand Tachometer DT 5350 (ISI TESTON Co. Ltd., JAPAN)로 비결측속측정을 하였다.

봉제시에는 봉제속도의 증가에 따라 첨온이 현저히 증가하므로, 절열 발생에 따른 오차를 줄이기 위해, 생물체작 시간사이에 2절 이상의 간격을 두어 첨온을 하강시켰다.

봉제후에는 봉합강도 실험에서 양쪽 솔기가 풀어지는 것을 방지하기 위해 양쪽에서 25mm 들어와서 솔기선과 수직방향으로 솔기선에 이르기 2mm 전는 지점까지 턱걸이 하여 주었다.
봉제후의 샘플모양은 Fig. 1에 나타내었다.

2.5 봉합강도

봉합강도는 직물의 봉합강도와 봉합강도와의 봉합효율을 보기 위해, 봉합강도 시험과 같은 시료 크기인 정사방방 16cm, 위사방향 10cm로 제단하였다.

봉합강도 시험 조건은 다음과 같다.
1) 봉합강도 시험기 : Versa Test (Mecmesin Co., Ltd., ENGLAND)
2) 인장 속도 : 250 mm/min
3) 파지 거리 : 12 cm

봉합강도 시험의 결과는 Table 1에 나타내었다.

2.6 봉합효율

Fig. 1의 봉합상태대로 솔기 방향에 수직인 봉합강도를 측정하였다. 봉제시 받은 피로의 양이 크지 않으므로 피로의 회복에 의한 상대적인 오차를 줄이기 위해, 표준상태에서 모든 시료를 24시간 이상 콘디셔닝을 하였다. 봉합강도를 5회 측정 산술통계하였고, 클램프부근에서 절단된 것은 측정값에서 제외하였다.

시험 조건은 봉합강도 시험과 같다.

2.7 봉합효율

봉합효율은 FS의 Seam Efficiency Method에 시험된 다음 식으로 봉합효율을 산출하였다.

\[
SE(\%) = \frac{\text{Clothing strength at stitching}}{\text{Original cloth strength}} \times 100
\]

\(SE\) : Seam Efficiency

2.8 직물 분석시험

시료와 봉사의 조합에 따라 과포장식이 다르므로 봉합강도 시험에서 시료가 과포장되어 분리되는 시점이전에 인장 시험기의 하중이 더 이상 증가하지 않을 때 시험기를 정지시켜 그 과포장식을 보았다.
직물 분석기는 Image-Bora (Micro Tech. Ind.
Co., Ltd., KOREA)를 이용하여 100매의 폐울로 관찰하였다.

III. 결과 및 고찰

3.1 통계속도에 따른 통합강도

통계속도에 따른 통합강도의 실험결과는 Table 3과 같다.

3.1.1. 직물에 따른 통합강도

Fig. 2-4는 Table 3의 실험결과에서 동일한 통사름 사용한 때, 직물과 통계속도에 따른 통합강도를 나타냈다.

Fig. 2-4에서 사용된 직물 모두 동일한 통사름 조건에서 볼 때, 통계속도가 증가함에 따라 강도 저하가 현저함을 보이고 있고, 통사름 및 통사름의 조합에 따라 통합강도 분포와 강도 저하 양상이 다르게 나타남을 알 수 있다.

면 통사사용의 경우(Fig. 2), 각 직물과 통사조합의 통합강도 분포도가 좆고 통합강도도 낮게 나타난다. 이는 면 통사의 루프강도가 상대적으로 작으므로 작하므로 통합부분이 파괴되는 과정에서 통사가 먼저 절단되기 때문으로 생각한다. 즉, 직물의 인장강도가 크더라도 통사의 루프강도가 작으면 통사가 먼저 파괴되므로 통합강도는 통사강도에 의존하게 된다.

이 때, 통계속도 증가에 따라 강도 저하가 나타나는 것은 통계속도가 빨라짐에 따라 더욱 강한 마찰로 인해 직물과 통사가 피로히하여 물성이 저하된 것으로 보인다.

폴리에스테르필라멘트 통사 사용의 경우(Fig. 3), 직물의 인장강도가 큰 면, 폴리에스테르직물과의 통합강도는 상당히 크고, 직물의 인장강도가 작은 레이온, 텐셀직물의 통합강도는 낮게 나타나고 있다.

이는 통사의 루프강도가 큰 경우, 통합강도는 직물의 인장강도에 크게 의존하는 것으로 보인다. 폴리에스테르직물은 2000r.p.m에서 통합강도가 크게 저하된 다음 완만하게 감소하는 특징을 나타내었다. 즉, 폴리에스테르직물과 폴리에스테르필라멘트사조합은 저속에서 통사로 개선하는 것이 보다 강한 통합강도를 유지하게 된다. 텐셀직물은 통사에 따른 통합강도 손실이 가장 적었으므로 텐셀직물과 폴리에스테르필라멘트사조합은 통사제에 따라 고속통사체를 하여도 강도저하가 크지 않게 있어서 유용하다고 할 수 있다.

폴리에스테르 방직사 사용의 경우(Fig. 4), 통계속도 증가에 따른 직물의 인장강도가 큰 면, 폴리에스테르직물이 상대적으로 큰 통합강도 저하를 나타냈고, 레이온, 텐셀직물은 완만하게 감소하는 경향을 나타냈다. Fig. 4는 Fig. 2, 3과 비교해서 통사와 직물이 통합강도에 대등한 기여를 하는 것으로 보여진다.

Fig. 2-4에서 각 통사와 폴리에스테르직물의 조합 경우, 통계속도에 따라 상대적으로 큰 강도 저하

<table>
<thead>
<tr>
<th>Material</th>
<th>Thread</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>3500</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyester(fil)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyester(spun)</td>
<td>22.68</td>
<td>21.92</td>
<td>20.49</td>
<td>20.76</td>
<td>17.71</td>
<td>17.43</td>
<td></td>
</tr>
<tr>
<td>Polyester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyester(spun)</td>
<td>22.46</td>
<td>20.49</td>
<td>19.52</td>
<td>18.54</td>
<td>18.10</td>
<td>17.97</td>
<td></td>
</tr>
<tr>
<td>Rayon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyester(fil)</td>
<td>14.32</td>
<td>13.97</td>
<td>13.07</td>
<td>12.72</td>
<td>11.73</td>
<td>11.54</td>
<td></td>
</tr>
<tr>
<td>Polyester(spun)</td>
<td>13.78</td>
<td>13.66</td>
<td>13.38</td>
<td>13.20</td>
<td>12.97</td>
<td>12.27</td>
<td></td>
</tr>
<tr>
<td>Tencel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyester(fil)</td>
<td>15.51</td>
<td>15.47</td>
<td>15.10</td>
<td>14.77</td>
<td>14.24</td>
<td>13.49</td>
<td></td>
</tr>
<tr>
<td>Polyester(spun)</td>
<td>16.28</td>
<td>16.40</td>
<td>16.00</td>
<td>15.94</td>
<td>15.58</td>
<td>14.94</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seam strength (kgf)</th>
<th>r.p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td></td>
</tr>
<tr>
<td>Polyester</td>
<td></td>
</tr>
<tr>
<td>Rayon</td>
<td></td>
</tr>
<tr>
<td>Tencel</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2. Relation between the seam strength and sewing speed at cotton thread

Fig. 3. Relation between the seam strength and sewing speed at polyester(fil) thread

Fig. 4. Relation between the seam strength and sewing speed at polyester(spun) thread

Fig. 5–8은 Table 3의 실험결과에서 동일한 직물을 사용할 때, 봉사와 봉직도에 따른 봉합강도를 나타냈다.

봉합강도에 영향을 주는 직물의 원인을 제외하면 봉사가 낮게 되는데 이 경우 봉합강도는 봉사의 일장을 담당 스티치 수에 의해 결정지어진다. 여기서 스티치 수는 고정되어 있으므로 봉사의 일장을 크면서, 송기 강도가 강하게 된다.

Fig. 5–8에서 보면, 봉체속도 증가에 따라 봉합강도가 저하하였으며, 같은 직물이라도 봉사의 특성에 따라 봉합강도가 다르게 나타났다.

봉합강도는 봉사의 루프강도 크기와 비례하며, 봉사의 종류에 따라 봉합강도 차이가 많이 나타났으며 봉사강도 크기는 폴리에스테르 필라멘트가 봉사>폴리에스테르 방직사였지만, 봉합강도 크기는 폴리에스테르 필라멘트>폴리에스테르 방직사>봉사로 투프강도 크기순으로 나타났다.그리
무로, 본봉세봉기의 봉합강도를 생각하는 경우, 봉사의 쿠프강도를 고려하는 것에 의해 상당히 정량적으로 다를 수 있다는 검정의 연구가 타당함을 알 수 있다. 면 봉사의 경우, 풀리에스테르 폴라멘트사, 풀리에스테르 방직사와 비교해서 봉제속도 증가에 따른 강도 저하가 상대적으로 작은을 알 수 있다.

이는 면 봉사가 풀리에스테르 폴라멘트사, 풀리에스테르 방직사보다 열에 안정했기 때문에 봉제속도에 의한 영향을 적게 받은 것으로 생각된다. 또한, 봉사 물성으로 인하여 봉제질 때 소비되는 소비량의 차이에 의해서도 봉합강도 차이가 생길 것으로 추정되나 아직 소비량에 관한 정량적인 연구

Fig. 5. Relation between the seam strength and sewing speed at cotton fabric

Fig. 6. Relation between the seam strength and sewing speed at polyester fabric

Fig. 7. Relation between the seam strength and sewing speed at rayon fabric

Fig. 8. Relation between the seam strength and sewing speed at tencel fabric
가 부족하여 봉합강도와의 연관성을 명확하게는 발휘 수가 없다.

레이온과 텐셀직물 봉제의 경우(Fig. 7, 8), 봉체속도 증가에 따라 봉합강도 순서가 증가하고 있지만, 봉사간의 봉합강도 차이가 매우 작게 나타나는 특징을 보이고 있다. 레이온, 텐셀직물의 인장강도가 모두 작으므로 봉합강도 시험에서 인정될 때 봉사보다는 직물이 먼저 파괴되어 비단. 즉, 봉합부분의 봉사 루프는 남겨져 있고 직물만 활발 또는 철단되는 경우이다. 이 경우에는 봉사 물성이 직물 물성을 보다 봉합강도에 영향을 적게 주는 것을 알 수 있다. 그러므로, 인장강도가 약한 직물에서는 봉사간의 차이가 거의 보여지지 않으므로 루프강도가 약한 봉사를 선택하고 대신 봉합강도를 강하게 하기 위해 서는 스티치 밀도를 높게 할 필요가 있다.

이상의 결과에서 직물의 인장강도가 큰 면, 폴리 에스테르직물은 봉사의 루프강도 특성이 잘 나타나고, 상대적으로 인장강도가 약한 레이온, 텐셀직물은 봉사의 특성이 악화되어 비슷한 봉합강도를 나타낸 것으로 보아 직물의 특성이 영향을 많이 주는 것으로 판단된다.

3.2 봉합효율

위류 제품에서 봉합부분이 파괴되는 경우는 봉사가 절단되는 경우, 직물이 파괴되는 경우, 봉사와 직물 양쪽이 절단되는 경우로 생각할 수 있다. 이 때, 최대의 봉합강도는 봉사와 직물이 동시에 절단될 때이다. 그러나, 실험적인 면에서 보면 봉사 절단의 경우는 보수가 가능하지만, 직물이 파괴되는 경우는 외부로서 사용이 불가능하게 된다.

그러므로, 봉합효율은 높은 것이 바람직하지만 너무 강하면 직물의 저수가 절단되기 때문에 봉사와 직물이 절단되는 이전의 값을 목표로 하는 것이 합리적이다.

이상의 관점에서 실험결과로부터 산출한 봉합효율은 Table 4와 같다. 봉합효율은 봉체속도가 증가함에 따라 감소함을 알 수 있다. 면직물×폴리에스테르 필라멘트가 가장 봉합효율이 높고, 폴리에스테르직물×면 봉사가 가장 작은 봉합효율을 나타냈다.

봉합효율은 봉합강도가 크다고 해서 반드시 높은 것만은 아님을 알 수 있고, 1500~3500r.p.m에서 보면, 봉사의 루프강도가 강하다고 하여 반드시 좋은 봉합효율을 나타내는 것이 아님을 알 수 있다. 면직물의 경우 직물의 인장강도가 강하기 때문에 면 봉사 보다 상대적으로 루프강도가 큰 폴리에스테르 방직사가 봉합효율이 좋았고, 폴리에스테르직물은 폴리에스테르 필라멘트가, 텐셀직물은 면 봉사가 가장 적절한 봉합효율을 나타내고 있는 것으로 보아, 비교적 비슷한 물성을 가진 직물과 봉사가 적절

<table>
<thead>
<tr>
<th>Table 4. The seam efficiency according to sewing speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fabric</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
한봉합효율을 이루고 있었다.

3.3 직물의 파괴양식

직물의 속기는 착용중 여러 가지 의례에 의해 손상되며, 속기 파손에는 병사가 점단되는 경우와 직물이 손상되는 경우, 병사와 직물이 동시에 점단되는 경우가 있다. 이들은 모두 병사와 병합강도와의 밴드에 좌우되며, 이중 직사합방은 속기와 직사합방의 관계에 의해 일어난다(2).

봉합 강도 실험에서 보여진 파괴양식의 결과는 직물과 병사에 따라 다양한 양상을 나타내었으나, 봉착속도에 따른 차이는 없었다.

파괴양식에서 보여지는 양상은 다음과 같다.

먼, 폴리에스테르직물의 경우, 먼 병사, 폴리에스테르 필라멘트사, 폴리에스테르 방직사 모두 병사가 점단되는 양식이 보였고, 직사의 활발도 약간 보였다. 병사점단은 병합강도에 비해 직물의 인장강도가 클 때 일어나며 직사의 활발은 속기와 직사밀도 등과의 관계에 의해 일어난다.

레이온직물의 경우, 직물의 인장강도가 아주 약하므로 상대적으로 약한 병합강도의 병사를 사용할 때는 직사, 병사 점단과 직사의 활발등 모든 양상이 혼재되어 나타났고, 폴리에스테르 필라멘트사, 폴리에스테르 방직사 사용 때는 직사가 점단, 활발되는 경향이 보였다. 직사의 점단은 비교적 인장강도가 약한 직물과 병합강도가 강한 병사로 분해할 때 일어난다. 그러므로 인장강도가 약한 병사에 대해서는 병합강도가 약한 병사로 분해하고 병합강도를 크게 하기 위해서는 속기 밴드를 높게 하는 것이 유용하다.

현실직물의 경우에는 병합강도가 폴리에스테르 필라멘트사에 비해 상대적으로 작은 먼 병사와 폴리에스테르 방직사에서는 병사 점단, 직사 활발이 나타났고, 폴리에스테르 필라멘트사의 경우에는 직사 점단과 활발이 보였다.

Fig. 9. Breaking mode at 3000r.p.m.
폴리에스테르 필라멘트사의 루프강도가 크기 때문에 직물의 인장 강도가 큰 면, 폴리에스테르직물의 경우에는 봉사가 절단되었지만 레이온, 탄선직물의 경우에는 직물이 먼저 파괴되는 양상이 나타났다.

Fig. 9의 a~f는 3000rpm에서 봉제된 루프강도의 다양한 파괴양식을 나타내었다.

a는 면직물과 폴리에스테르 필라멘트사 조합시에 나타난 봉사 절단과 앎진의 직사 활발 모습이다.
b는 폴리에스테르직물과 폴리에스테르 필라멘트사 조합시에 나타난 봉사 절단과 직사 활발의 모습이다.
c는 레이온직물과 면 봉사 조합시에 나타난 직사, 봉사 절단 및 직사 활발이 혼재되어 나타난 모습이다.
d는 레이온직물과 폴리에스테르 필라멘트사 조합시에 나타난 직사 절단, 활발의 모습이다.
e는 탄선직물과 면 봉사 조합시에 나타난 봉사 절단, 직사 활발의 모습이다.
f는 탄선직물과 폴리에스테르 필라멘트사 조합시에 나타난 직사 절단, 활발의 모습이다.

IV. 결 론

이 연구는 직물과 봉사를 조합시켜 직물과 봉사 별 봉합강도를 측정하여, 봉제속도에 따른 봉합강도의 저하를 정량화하며, 그 과파양식을 살펴보고, 효율적이며 적절한 직물과 봉사의 조합을 구체보고자 하였다.

실험은 봉제속도를 1500, 2000, 2500, 3000, 3500, 4000rpm으로 6단계로 나누어 실험하였으며, 실험에 사용한 직물은 면, 폴리에스테르, 레이온, 탄선이며, 봉사는 면100%, 폴리에스테르100% 필라멘트사, 폴리에스테르100% 방직되었다. 직물과 봉사의 조합에 따라 각 봉제속도마다의 봉합강도의 저하가 인상중에 직물의 과파양식을 살펴보고, 직물과 봉사의 조합에 따른 봉합효율을 계산하였다.

연구의 결과는 다음과 같다.

1. 봉제속도가 증가함에 따라 각 직물의 봉합강도 저하 현상이 있었으며, 봉사와 직물의 조합에 따라 봉합강도의 크기와 강도 저하 양상이 다르게 나타났다.

2. 직물의 인장 강도가 큰 경우 봉합강도가 크게 나타났으며, 봉합강도 크기는 사용 봉사의 루프강도 크기 순으로 나타났다.

3. 직목의 인장 강도가 작은 경우 봉합강도가 작게 나타났으며, 사용 봉사간의 봉합강도 차이도 작게 나타나는 것으로 보아, 봉사의 특성 영향이 약화되고 직목특성 영향이 큰 것으로 판단된다.

4. 봉사의 루프강도가 강하다고 하여 반드시 좋은 봉합효율을 나타내는 것은 아니며, 비교적 비슷한 물성을 가진 직목과 봉사가 좋은 봉합효율을 가졌다.

5. 직목과 봉사의 조합이 각각이 가지는 특성에 따라 다양한 파괴양식을 나타내었다.

참 고 문 헌

1. 織維製品消費科学ハンドブック, 光生館
2. 芋野観子, ミシン線いによる布地 針, 線の関係(第2報), 家政学雑誌, 12(3), (1961).
3. 石原美穂, ミシン線い目的強さに関する研究(第5報), 日家政学雑誌, 26(4), (1975).
5. 島崎恵美, 線目の強さに関する研究, 線消誌, 20(8), (1979).
7. 高木貴美子, 石毛フミ子, ゆかた地における線い目的強さと収縮, 家政学雑誌, 24(6), (1973).
8. 石原美穂, ミシン線目の強さに関する研究(第2報), 家政学雑誌, 17(4), (1966).
12. 島倉應, 線の種類と用法, 消誌, 23(11), (1982).