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A Neural Network Model for Visual Selection:
Top-down mechanism of FeatureGate model
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Abstract Based on known physiological and psychophysical results, a neural network
model for visual selection, called FeaureGate. is proposed. The model consists of a
hierarchy of spatial maps, and the flow of information from each level of the hierarchy to
the next is controlled by attentional gates. The gates are jointly controlled by a
bottom-up system favoring locations with unique features. and a top-down mechanism
favoring locations with features designated as target features. The present study focuses
on the top-down mechanism of the FeatureGate model that produces results similar to
Moran and Desimone’s (1985), which many current models have failed to explain. The
FeatureGate model allows a consistent interpretation of many different experimental
results in visual attention. including parallel feature searches and serial conjunction
searches, attentional gradients triggered by cuing, feature-driven spatial selection, split
attention, inhibition of distractor locations, and flanking inhibition. This framework can
be extended to produce a model of shape recognition using upper-level units that respond
to configurations of features.
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Qur visual system is thought to consist of
different processing stages, solving different
computational problems and processing different
representations at each stage (Marr, 1982). At
any given moment the visual system receives
more information than it can fully process.
Thus, some portion of the input needs to be
selected and processed more carefully than the
rest. To understand when and how the
selection occurs, a number of attention studies
have tried to reveal what types of
representations are selected. Most of the
studies have suggested or assumed a two-stage
theory of visual information processing in which
the first stage is the preattentive,
processing and the second is the attentive,
serial processing (e.g., Neisser, 1967). While
the first stage processes simple features in
parallel over the entire visual field, the second
stage analyzes a complex form or identifies a
visual object by selecting a particular location.
Such a hypothesis has been supported by a
number of visual search and spatial cuing
studies, and can also be computationally

parallel

justified by showing that parallel operations on
the recognition of multiple objects over the
whole visual scene result in a combinatorial
explosion of computational resources (e.g..
Ullman. 1984). From a computational
viewpoint, a prime goal of the visual attention
studies is to understand what is the most
important problem in visual attention and how
the problem can be solved. Based on our
current, limited understanding of "how our
visual system selects information or from what
types of visual representations visual stimuli
are selected,” the selection is most likely based
If so, then how can the selection
by location be implemented in biological visual
systems? One approach to solve this problem
will be to consider the known neurobiological
and computational properties
system, and then to formulate a model within
these constraints. The present study will

on location.

of our visual

describe the general background for
constructing our neural network model for
visual selection, named the ’"Feature Gate

(FG)” model (Kim & Cave, 1994: Cave, Kim,
Bichot, & Sobel, 1999). Incidentally, although
FG is still under development, the final version
of the model will be constructed with enough
detail so that it can generate many useful
experimental predictions as
theoretical questions.

well as new

Neurophysiological and Psychophysical Constraints

Neurophysiological studies have shown that
our visual system extracts progressively more
complex forms of structure at each stage of
visual processing. For example, numerous
simple cells in area V1 code for the local
orientation of contrast, each at a different

position and scale in a massively parallel
manner. At progressively higher levels,
neurons in V2 and V4 can respond to more
complex forms (e.g., hyperbolic patterns,
Gallant, Braun, & Van Essen, 1993), and

finally neurons in inferotemporal cortex (IT)
and superior temporal sulcus (STS) appear to
complex objects (Gross,
Rocha-Miranda, & Bender, 1972: Rolls &
Baylis, 1986). Moreover, at the highest levels
of visual processing (IT, STS), the neural
response to the identity of the object ("what’)
is rarely affected by the location and size of
the object ("where”). Many neurophysiological
studies have shown that our visual system

respond to

processes visual features mainly with two
separate visual pathways, the ’“what” and
"where” pathways (e.g., Mishkin, Ungerleider,
& Macko, 1983 Livingstone & Hubel, 1988:
Goodale & Milner, 1992: Ungerleider &
Mishkin, 1982). This implies that our visual
system saves a great number of neural

resources by encoding “what” separately from
"where” (e.g.. see Olshausen, 1994).

Besides these neurophysiological constraints,
many attention models suggest that primary
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visual feature dimensions such as color,
orientation, location and so on, are processed
and represented with independent modules or
separate feature maps (see, e.g., Treisman,
1988: Cave & Wolfe, 1990: Bundesen, 1990).
In addition to the global
separate coding structures,
constraint came from a single-cell study by
Moran (1985), which most
current attention models cannot explain.

constraints from

another important
and Desimone

Moran and Desimone recorded single cells in
V4 and IT of monkeys who were trained to
attend to stimuli at one location in the visual
field and ignore stimuli at another location.
When the two stimuli were both within the
receptive field of a cell, the cell activity to the
unattended stimulus was inhibited while the
cell activity to the attended stimulus was not.
Moreover, when one stimulus was inside the
receptive field and another
outside, the cell activity to the stimulus inside
the receptive field was not inhibited, whether
it was attended or not. These physiological
data give the following important implications
in building a neural network model of visual
selection: 1) a target (attended
location) will be activated. regardless of
whether distractors appear near the target or
not, ii) distractor locations will be inhibited
when the target is present nearby them, and
iii) distractor locations will not be inhibited
when target is not present or when the target
is far from them.

stimulus was

location

Many psychophysical studies have shown that
location plays an important
organization and selection of visual information
even when location is irrelevant to correct
responses in tasks (e.g.. Tsal & Lavie, 1993:
Cave & Pashler, 1995). Also, Kim and Cave
(1995) measured spatial attention
search tasks using a probe technique and
showed that both speed and accuracy for
detecting probes are facilitated at the target
location, and at the

role in the

in visual

locations containing a

distractor with one of the target’s features,
implying spatial
features. Also, this study gave strong evidence
that attention is used in a very easy search
task with an “almost flat” slope which has been
considered to be “parallel.”

Based on these empirical results, a
"location-specific” selection will be implemented
with a neural network model. Like any other
models, the model proposed here will have to
explain a long line of empirical results from

attention driven by target

the previous studies noted until now. In
particular, ‘with the neural network model, the
following properties of visual selection will be
implemented: i) Selective processing will
operate based on spatial attention, ii) Spatial
attention will be allocated based on target
features, iii) Selective spatial processing will
occur at an early stage (e.g.. see also Motter,
1993, for neurophysiological evidence that
attentional effects were observed for V1 and V2
neurons as well as V4), iv) As suggested by
the physiology of our visual system, the model
will have a hierarchy of units (neurons), with
larger receptive fields for the higher layers, v)
To select locations quickly and efficiently, the
model will rely on parallel distributed selection
and local operations through the multiple
layers, and vi) As suggested by Moran and
Desimone (1985), activation of a location unit
will be inhibited when a distractor feature
occupies the location and at the same time a

target feature is located within the same

receptive filed.

Architecture of FG

In this section, a model architecture will be
built up in steps to meet the above
constraints. Although the model is designed to
be consistent physiology. its
have not vet
corresponded to particular cortical areas. For
now, the model assumes that color and

orientation are analyzed independently, just as

with known

particular components
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Feature Integration Theory (Treisman &
Gelade, 1980: Treisman & Sato, 1988) and
Guided Search (Cave & Wolfe, 1990) did. The
model will explore basic architectures for visual
selection, and as the model develops, it will
reflect known physiological structures more and
1 first
components of the model and then progressively

more. introduce some of the basic

add more components.

Output Units

5\‘ E Layer (i)
e ERE Y SR etiow
.
Color Module Orientation Module
Figure 1. Color and Orientation Modules and

Location Map.

Feature Modules and Location Map.
Figure 1 illustrates a global framework of the
model that consists of some of the basic
components, such as Color Module, Orientation
Module, and Location Maps. As shown in
Figure 1, within each layer, different feature
units respond to each color or orientation at
In the lower layer, all units

information

each location.
have small receptive fields. As
travels up the hierarchy, the number of units
in each layer decreases and the receptive field
At the top level, the
receptive field for each output unit covers the
entire visual field. Each unit in the layer
(i+1) receives input from its receptive field
("neighborhood”) that consists of a 3 x 3 array
via links that are

size relatively increases.

of units in the layer (i)
dynamically gated by their location units.

Location Map. Figure 2 shows how the
location units gate connections between Layer

(i) and (i+1). For simplicity, only one

One Unit in Layer(i+1)

200
QQ-O Location Map
200

QO |d % i
(O(O(O (C‘)O% One Neighborhood in Layer(i)
Red Green
Color Module o: Opening Gate when activated
Figure 2. Location Map gates connections between

two layers of Color Module.

neighborhood in Layer (i) was depicted using
only red and green colors. FEach unit in the
location map controls the information flowing
from its corresponding feature units to the next

layer. Also, as shown in Figure 3, location
units within each neighborhood interact
competitively. It is a Winner-Take-All

competition that allows the net to localize the
most activated unit while inhibiting all others.
Thus. only the information from that location
will be transmitted to the next level.

/\G-e

I —————
Winner-Take-All competition
in Location Map

Figure 3. Competitive interaction within one Neighbor-
hood in Location Map.

Selective Inhibitors. What determines the
activations of location units? As shown in
in Layer (i) can
activate their corresponding location units as

Figure 1, feature units

well as a feature unit in the upper layer.
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However, the connections between units of the
feature map and the location map are also
gated by an additional set of units,
Selective Inhibitors.
each Selective Inhibitor unit receives
from three different sources.
is the Target Feature Unit.
the target is a green item, then the Target
The
is their own feature units at

The final source is other
feature units at some other location within the
same neighborhood.
sources are combined by a set of Selective
Inhibitors location,
input from the current location, other locations
feeding into the same units at the next level,
and the Target Feature Units.

named
As shown in Figure 4,
inputs
The first source
For example, if

Feature Unit for green would be active.
second source
their locations.

Activation of these three
receiving

for each each

One Unit in Layer(i+1)
o) Target Feature Units

Location Map

/.
-/
f
oINS
/-

D
S

Selective
Inhibitors

One Neighborhood in Layer(i)

Red Green
Color Module

@ : Closing Gate when activated

o UPERIG Luk w Ben eotivared

Figure 4. Selective Inhibitors gate links from Feature
Units to Location Units.

Selective Inhibitor units are
activated, they in turn inhibit the link between
its feature unit and location unit.
location is inhibited when it
nontarget feature and another unit in the same

Once these

Therefore, a
contains a

neighborhood contains a target feature. In
other words, a location is inhibited only when
it carries a strong signal that will interfere
with a selected signal at the next step up in
the hierarchy. For example, when a target is
a green item and red distractors appear with

the green item, the Selective Inhibitor units in
the red feature map will be activated, and thus
will inhibit the activity transmitted from the
red feature wunits to their corresponding
location units. However, if both target and
distractor features do not appear within the
same neighborhood, then no Selective Inhibitors
will be activated and thus no inhibition will
in which the
Inhibitors information illustrates a
basic principle of the model. Any features will
be gated or attenuated whenever they are at a
location with a distractor feature that will
interfere with a target feature at the next step
up in the hierarchy. Under this principle, an
object with the target feature will make it to
the top of the hierarchy, no matter where it
appears in the visual field, and what other
distractors are present.

oceur. The way Selective

combine

One Unitin Layer(i+1} One Unitin Layer(i+1)

Target Feature Units D
[ b b
Z1
>, 7 R
H— T I‘/ ’Local,on Map \ \I
X D)
“u' i’ Selective g
¥ 3 Inhibitors
(1M 1
[ 4
a i
% 88() One Neighborhood - q (
in Layer(i) = (0]¢
Red Green Horizontal Vertical
Color Module Orientation Module
(e : Closing Gate when activated; o : Opening Gate when activated)
Figure 5. One portion of the model with Color and

Orientation Modules

The same structure can be used for other
feature dimensions such as orientation (Figure
5). If a unit in the Location Map is not
activated, all information from that location
will be blocked or attenuated, including color,
orientation, and all other features. Moreover,
the network in Figure 5 can be
replicated may times to cover the entire visual
field. This collection of nets would form one
layer of a processing hierarchy.

shown

The output
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units at this level would be input units for the
next level. All  the wunits from one
neighborhood feed into the same set of units at
the next level. At each level of the hierarchy,
the receptive fields are.larger than the level
Finally, at the top level, the receptive
Therefore,

below.
fields cover the entire visual field.
spatial attention determines what information
makes it to the top of the hierarchy. Our
visual system would require such a selection
mechanism because without selection, all the
features from all the visible objects would be
on in the top level, and there would be no way
to sort them out.

Example - with conjunction stimuli
of color and orientation.

In this section, an example will be provided
to show how the structure depicted in the
previous section actually selects a particular
location in steps. Here again, only one
neighborhood is used for simplicity.

OneUnitin  Layer(i+1) One Unitin ~ Layer(i+1)

O Target Feature Units ( >
S

THES

SN

Vertical

Red Green Horizontal
Color Module \‘\ //' Orientation Module

Lacation Map

b4 Selective
34 Inhibitors

One Neighborhood
in Layer(i)

o e fm T =
Rea a———§ | -}
© : Opening Gate when activated I ——| +:Closing Gate when activated

Visual Stimuli

Stimuli are presented to the network
Here, the target is a red

Figure 6.
through input units.
horizontal bar.

As shown in Figure 6, visual stimuli are
presented to the network through input units.
The target is a red horizontal bar in this
example. It is assumed that visual stimuli are
encoded in Feature Maps preattentively
according to the feature properties. If a target

feature is present in the neighborhood, then

Selective Inhibitors are activated at those
locations that have distractor features (Figure
™ Each active Selective Inhibitor unit
inhibits the connection between its
corresponding feature and location units
(Figure 8). Thus, distractor feature units
cannot activate their location
units when a neighboring location contains a
target feature. Finally, the location unit whose
activation is highest will be picked by the
Winner-Take-All and thus only
information from that location flows freely to
the next level (Figure 9).

corresponding

mechanism.

Q
O

One Unitin Layer(i+1} One Unitin  Layer(i+1)
‘Target Feature Units
G @G "z C ’
'Location Map jini
8§8 o ¥ SecNses
O o Inhibitors o o O ﬁ ﬁ
(@) [ lole) D
eTrI2esl — —1235H38s
@O0 |10e® T o

Vertical

Red Green Horizontal
Color Module ‘\\ /7 Orientation Module
Green - — — e | -
red ===t ||

© : Opening Gate when activated ] —— = : Closing Gate when activated

Visual Stimuli

Figure 7. When a target feature is present in the
neighborhood, Selective Inhibitors are activated at
those locations that have distractor features. (Note:
Black units are active. White units are inactive.)

One Unitin Layer(is1) One Unitin Layer(i+1)

Targei Feature Units

8 Selective
inhibitors
O
832 (288 3| (883
One Neighborhood
000 [OO® i 8| @O
Red Green Horizontal Vertical
Color Module ‘\\ //' Orientation Module
Green e = Lo | =
vt =1 E 1

© : Opening Gate when activated « : Closing Gate when activated

Visual Stimuli

Figure 8. FEach active Selective Inhibitor inhibits
the link between its corresponding feature and
location units. Here, distractor feature units cannot
activate their corresponding location units, and the

activation of the target location unit is largest.
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One Unitin Layer(+1)

S

One Unitin Layer(i+1)

TEEH Feature Units )

Location Map

il I L

Red Green Horizontal Vertical
Color Module ‘\‘\ //' Orientation Module

Green = — o |

red @———) 1 |

© : Opening Gate when activated « : Closing Gate when activated

Visual Stimuli

Figure 9. When a Location Map unit is active,
activation from the feature units for that location
flows freely to the next level. Here, the features at
the target s location are selected while the features
at the other locations are inhibited.

Computer Simulation

Up to now, I have described some basic
structures and mechanisms of the top-down
components of the model wusing only one
neighborhood. Since the Feature Gate model is
composed of network elements arranged in a
hierarchy, its mechanism can route information
from any location in the visual field to the top
of the hierarchy while limiting the interference
from distractor inputs. To demonstrate this,
the top-down components of the model have
been implemented as a computer simulation
using two types of visual search, simple feature
and current

conjunction searches. In the

simulation, the model structure contains five
layers, and each neighborhood in each layer
consists of a 3x3 region of locations and each
neighborhood is partially
neighborhoods Layers 1 and 2.
Figure 10 shows a computer simulation of
Here, the task is to

search for a red item. The activities of all the

overlaps nearby

simple feature search.

units here are assumed to be analog values
between 0 and 1 (the greater the activation,
the darker it is). The net begins with the
input layer (Layer 1) with each feature map
composed of a 21x21 array of units, and the

number of units decreases as the information
feeds into the next layer. As shown in the
Location Maps of Figure 11, the distractor
locations sharing the same neighborhood with
the target feature are inhibited at each
Location Map. Also, random noise arranging
-0.3 to +0.3 is presented in each location, as it
was in Guided Search (Cave & Wolfe, 1990), to
prevent search from being more efficient than
that found in human subjects. Although it is
assumed that the random noise could occur in
the feature maps, Inhibitors, the
transfer of information between the different
maps, or some combination of these,
added only to each Location Map here for
simplicity. With
locations may obtain a high activation leading
the wrong location to be selected. However,
even with the random noise, the net can
usually select the target feature successfully at
the first run, as shown in the Output unit.
The Combined Location Map
averaged activity for each location unit through
all the four Location Maps. This map plays no
role in the operation of the model, but displays
inhibition at different levels of the
hierarchy combines for each location in the
field. As you see, the target location has the
highest value and distractor locations nearby
the target are relatively more inhibited than
those far from the target.

Selective
it was

random noise distractor

illustrates an

how

By adding orientation features, a simulation
of conjunction search is performed(Figures 11
and 12). Without noise(Figure 11), the net
selects the target features(in this example, red
and horizontal) successfully on the first run.
Also, the Combined Location Map shows the
highest activation at the target location and
gradually decreasing from that
location, producing a ‘gradient’ of spatial
activation, as suggested by a spatial gradient
& Pinker, 1985:Mangun &
1988:LaBerge & Brown. 1989).
with the same amount of random

activation

model(Downing
Hillyard,
However,
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= Layer 5 (Output Unit)

== Layer4

(19x19)

Layer 1
(Input:21 x 21)

M Red: [: Green )

Color Module Location Maps

Figure 10. Computer simulation of simple feature
search with = 30 % noise in each Location Map.

Layer 5 (Output Unit) Combined Location Map
-

= B8 :

ﬁ Layer4 (3x3)

21)
Orientation Module

- Layer1 (Input;
Color Modul
(M: Red:

e
: Green )

Location Maps

Figure 11. Computer simulation of conjunction search
without noise in each Location Map. Without noise, the
conjunction target is selected easily.

™ 5 :Target Features

Layer 5 (Output Unit)

Combined Location Map

Pyt

o
[EESAS SRS SA0EE081
6egusasasaseanen

Layer 2 (19 x19)
(O

Layer1 (Input; 21 x 21)

Color Module Orientation Module
(M Red: f: Green )

Location Maps

Figure 12. Computer simulation of conjunction search
with + 30 % noise in each Location Map. With noise,
a distractor is selected over the target. The role of
noise in this model is similar to that in Guided
Search. If a nontarget is selected, the model inhibits
the selected location and continues to search serially
until it finds the target.

noise as before(+/- 0.3), a distractor is selected
selected over the target (Figure 12). If a
nontarget is selected, the model inhibits the
selected location (inhibition of return) and
continues to search serially until it finds the
target.

Discussion

Predictions. First of all, as shown in the
simulation of visual search, the Feature Gate
(FG) model can predict different results
between the simple feature search and
conjunction search tasks (Treisman & Gelade,
1980: Wolfe, Cave, & Franzel, 1989). With the
same amount of noise, the model can select a
simple target feature very easily, independently
of the number of distractors. However, in
conjunction search, the model rarely selects the
target as output at the first run. When the

selected location is not the target, the net will
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inhibit that location (inhibition of return:
Posner & Cohen, 1984: Klein, 1988), allowing
selection of the next highly activated location.
Thus, it is capable of ordered serial search
similar to that in Guided Search (Cave &
Wolfe, 1990: Wolfe, 1994). On the other hand,
the amount of inhibition will be decreasing
after some period of time, allowing items at the
inhibited location to be revisited.

Also, FG can explain the spatial attention
effects at the cued location, as shown in many
cueing experiments (Eriksen & Hoffman, 1974:
Posner, Snyder, & Davidson, 1980: Remington
& Pierce, 1984). Although mechanisms
concerned with bottom-up activation are not
included in the current model, a peripheral cue
will activate its location in the location map
through bottom-up activation, allowing a later
stimulus at that location to travel up the
hierarchy more easily. Also, the model could
explain central cuing experiments by including
direct top-down connections to the Location
Map.

The model can also explain why probes are
detected more quickly or more accurately when
they are at or near the primary target location

(Hoffman & Nelson, 1981: Heinze, Luck,
Minte, G&s, Mangun, & Hillyard, 1994: Kim &
Cave, 1995, 1999a, 1999b. Cepeda, Cave,
Bichot, & Kim, 1998). FG selects target

features by activating their locations, or more
specifically by inhibiting distractor locations.
Once a Location Map unit has been inhibited,
it takes time to adjust after a new stimulus
appears. Thus, it will slow the detection of a
probe appearing at the distractor location. On
the other hand, since the model moves the
locus of attention by inhibiting the currently
selected location unit and activating a new one,
rather than by sliding a spotlight across the
field, it shifts
attention that are independent of distance, as

visual predicts of visual

suggested by many psychologists (Remington &
Pierce, 1984: Sagi & dJulesz, 1985 Murphy &

Eriksen, 1987. Eriksen & Webb, 1989. Kwak,
Dagenbach, & Egeth, 1991). Also, the model
can be implemented so that search displays
with  multiple targets are more readily
responded to than those with a single target.
That is, two target locations in the same
neighborhood can activate each other, so that
one of them can feed into the next level more
quickly. This property of the model can
explain Mordkoff, Yantis, and Egeth's (1990)
results that most attention models based on
serial search cannot explain. Mordkoff et al.
(1990: see Mordkoff & Yantis, 1993)
showed that the fastest response to scenes
including multiple targets is faster than the
fastest response to scenes including single
targets. These data are a striking
contradiction of the serial binding hypothesis,
which predicts that the fastest responses to
scenes should not vary with the number of
targets. In FG, all of the target locations can
be selected simultaneously, so that they are all
contributing to the activation of the units at
the top level. Because these top-level units
receive activation from multiple locations, they
reach a threshold of activation more quickly,

also

and a response is generated more quickly.
Incidentally, the model proposed here can
explain many other previous studies. As
mentioned earlier, the Combined Location Map
in conjunction search (Figure 11) suggests an
attentional gradient (Downing & Pinker, 1985:
Mangun & Hillyard, 1988. LaBerge & Brown,
1989). However, with a popping-out target in
simple feature search (Figure 10), it shows the
highest activation at the target location, more
inhibition nearby it, and gradually recovering

activation, producing a 3-D symmetric
Mexican-hat-shaped distribution of spatial
attention.  Also, the response of a single unit

in this model is similar to that of a single cell
in V4 and IT (Moran & Desimone, 1985).
When both target (attended) and nontarget
(unattended) features appear in the same
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neighborhood (receptive field). the unit (cell)
activity to the nontarget features is inhibited
while the activity to the target feature is not.
However, when the target feature is outside of
the neighborhood, nontarget features are not
inhibited.

Comparison with other models. Most of
attentional mechanisms suggested in cognitive
psychology consist of wunknown structures,
whose characteristics are only conceptually
described, such as a spotlight metaphor of
spatial attention. Unlike those models,
Feature Gate model contains a concrete
network of simplified neuron-like units, and it
can be simulated directly on computers.
Moreover, one this
attention model is to build the basis for a more
complex model that will eventually explore how
visual selection contributes to recognition.
Most current attention models, such as Feature
Integration Theory (Treisman & Gelade, 1980:
Treisman & Sato, 1990) and Guided Search
(Cave & Wolfe, 1990), cannot explain how the

motivation for visual

selected information is actually routed to
recognition mechanisms. The current model
could be expanded to identify shapes by

in the higher levels of the
hierarchy that respond to combinations of
shape features. Mozer s {(1991) model of letter
and word recognition illustrates how such an

including units

architecture can be used to recognize complex
shapes. Additional Target Feature Units for
shapes would also be added. These units will
allow the model to select locations containing
particular shapes such as letters.

As mentioned earlier, one of the most
surprising results from Moran and Desimone s
(1985) study was that a unit was not inhibited
when the attended area was outside the unit s
receptive field. FG reproduces basically the
same results as Moran and Desimone’s by
employing location-based operations within each
receptive field.
cannot explain this phenomenon.

Most current attention models
For example,

Mozer (1991) set out to model object
recognition and found that he had to include a
spatial Although
attention mechanism serves similar
functions to FG, such as gating the connections
between two layers, it cannot explain Moran
and Desimone’s result because it suppresses all
unattended stimuli at each level regardless
their proximity to attended stimuli.

A neural network model by Olshausen,
Anderson and Van Essen (1993) also attempts
to describe how visual selection serves object
recognition. In their model, which was
developed from Anderson and Van Essen
(1987), they tried to implement an idea that
visual attention could be the key to forming
position- and size-invariant object
representations. Like FG and Mozer's model,
this model has a hierarchy of units, with larger
receptive fields in the higher levels. One of
the basic features in their model is that it
uses an attentional window in which interfering
information is inhibited. Thus, in their model.
any input beyond the attentional window or

mechanism for attention.

Mozer’s

receptive field will not be
inhibited, as shown in Moran and Desimone’s
results.

Although Mozer's model and Olshausen et
al.’s model share many similar features, they
differ in some aspects.
s model, wunits in each layer encode
combinations of the features at the layer below.
Thus, spatial relations are not preserved but
are re-encoded. In this type of system,
selection and identification can  occur
simultaneously within the same set of units.
In Olshausen et al.’s model, however, spatial
relationships between different
preserved as
hierarchy. That is, a region of visual input is
selected and passed up through a hierarchy of
levels without loss of its spatial relationships.
Thus, the spatial layout of the selected portion
of the visual field is represented at the top

outside a cell's

For example. in Mozer

locations are
information travels up to the
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layer and then analyzed - therefore, Stroop effect is proposed by Phaf, Van der
identification occurs after selection. Haijden, and Hudson (1990). While Cohen et

Niebur, Koch. and Rosin (1993) offered a al.’s model explains the Stroop effect based on

somewhat different account for Moran and
Desimone’s result based on the ’temporal
tagging” hypothesis (Crick and Koch, 1990). In
their model, attention to a particular location
initiates synchronous oscillations that are
passed up the hierarchy. For example, at the
lower layer (e.g.. V1 pyramidal cells), each cell
responds to red or green at a particular
location. If a particular region of the visual
field is selected, the firing rate of V1 cells
within the selected region 1is adjusted to
correspond to a 40 Hz range. This adjustment
is detected by inhibitory cells at the next layer
(V4 stellate cells) and is used to inhibit V4
pyramidal cells that respond to the distractor
feature. As noted in their paper, the
possibility of "tagged” input in attended area by
such oscillations was suggested by some studies
(e.g., Gray & Singer, 1989 Kreiter & Singer,
1992). However, other recent studies (e.g.,
Tovee & Rolls, 1992. Young., Tanaka, &
Yamane, 1992) failed to find evidence for the

oscillations in monkeys" areas V1 and IT.
Also, this model cannot preserve spatial
relationships within the selected area.

Cohen, Dunbar, and McClelland (1990)

proposed another network model of attention.
Their model provides an account of the Stroop
effect which requires attentional shifts in a
more general sort of attention between different
tasks, and not spatial selection. That is, they
are mainly concerned with shifts between
different processing tasks such as word
identification and color naming, and not shifts
in processing between different locations in the
visual field. Nonetheless, the basic mechanism
in their model is similar to the gating in FG
between the input and output units by the
Map. and also the control over the
Location Map from the Selective Inhibitors.
Another network model that simulates the

Location

weight differences as a consequence of
differential learning, Phaf et al.’s model
predicts the effect based on its particular
architecture such as direct connections, which
is similar to FG.

Humphreys and Miller (1993) presented a
connectionist model that performs visual search
in parallel across the visual field based on
Duncan and Humphreys's (1989) visual search
theory. Duncan and Humphreys claimed that
search items are encoded in parallel,
independently of whether they are simple
features or conjunctions. The main point of
their theory is that search difficulty increases
as similarity of target to distractors increases
and similarity between distractors decreases.
Also, an efficient search can be accomplished
by rejecting nontargets that are strongly
grouped. Likewise, in the model of Humphreys
and Miller (1993), similar items are grouped,
and selected together. That is, once
combined-features (e.g., L or T) are encoded in
parallel, grouping is implemented by
within-map facilitatory links and between-map
inhibitory  links. Then, areas  with
unambiguous grouping are rejected recursively
until the target is found (positive response), or
no items are left (negative response). Thus,
this model predicts a flat search slope with a
single distractor group, and steeper slopes with
increased the number of distractor groups.
This model was tested with several search
tasks and showed results consistent with
human subjects (see also, Miiller, Humphreys,
& Donnelly, 1994). One drawback in this type
of model is that a number of connections are
required for the grouping processes. Moreover,
if grouping is assumed to operate on the basis
of not only simple-form conjunctions as in their
model, but also many different
representations, the number of

levels of
required
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connections would increase explosively.

Conclusion

Examining the special role of spatial
attention in visual selection raises a number of
theoretical controversies in visual attention

research. For example, one must consider the

distinctions between early- versus
late-selection, between object-based versus
location-based  selection, between parallel
versus serial processing, between top-down
versus bottom-up processing. and so on.

Spatial attention undoubtedly plays a special
role in visual selection and recognition, but the
exact nature and extent of that role still

remain unanswered,  Moreover, If visual
processing involves a number of separate
stages, then each stage will have its own

computational limits, and may - have its own
selection mechanism(s) rather than having a
single unique attention mechanism across all
stages. Assuming that such multiple attention
systems exist, we should not interpret different
results from different paradigms as being
mutually exclusive. For example, both spatial
attention and object-based attention occur in
visual selection, one at an early stage, the
other at a later stage, respectively, or both
simultaneously. Yet, the FeatureGate model
presented here is an attempt to provide a
consistent interpretation of a great deal of
empirical data based on a single selection
mechanism, location-based selection, and this
view is tenable and seems to provide the most
them. The Feature
Gate model shows a single mechanism that can
account for different attentional results from
visual search, location cuing, and spatial
probes. Its architecture is generally consistent
with known physiology. It demonstrates how
location-based selection can efficiently select
targets defined by nonspatial properties such
as color and orientation. It also shows that an
attentional gradient can arise from a hierarchy

parsimonious accounts for

This general architecture
into a model of visual

of different scales.
can be developed

recognition, and will help in exploring how
spatial selection contributes to higher-level
cognition.

The current model is presented as a starting
point  for about visual
selection, and it is still under developing. In
the line of developing the model, Cave, Kim,

future theorizing

‘Bichot, and Sobel (1999) added a bottom-up

system to the model and elaborated the
simulation so that it can reproduce results
from different attention experiments, including
visual search, cueing, and probe experiments.
Although the model is meant to be primarily a
model of spatial attention, eventually the model
will be expanded to identify shapes, so that it
can be used to explore how spatial selection
contributes to object recognition in complex
displays.
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