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Hygrothermal Bending Analysis of Laminated Composite Plates and
Shells Considering a Higher-order Shear Deformation
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Abstract

The presence of elevated temperature and moisture can alter significantly the structural response of
laminated composite plates and shells. A hygrothermal environment causes degradation in both strength
and constitutive properties, particularly in the case of fibre-reinforced polymeric structures. Futhermo-
re, associated hygrothermal expansion, either alone or in combination with mechanically induced defor-
mation, can result in buckling, large deflections, and excessively high stress levels. Consequently, it is
often imperative to consider environmental effects in the analysis and design of anisotropic systems.
This paper focuses on hygrothermally induced deformation behaviour of anisotropic structures and ex-
pand the third-order shear deformation theory by the Double-Fourier series. Numerical results for de-
flections are presented showing the effect of side-to-thickness ratio, aspect ratio, material anisotropy.

Keywords . laminated composite plates and shells, hygrothermal effects, side-to-thickness ratio, as-
pect ratio, higher-order shear deformation

1. INTRODUCTION composites in civil, aerospace and mechanical

engineering structures, studies involving the

With the increased use of fiber-reinforced thermomechanical behavior of composite ma-
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terial plates and shells are receiving greater
attention. Most of the previous research in
the field of composites deals with isothermal
problems. However, use of composites in envi-
ronments with large temperature change {(e.g.,
in applications such as the space shuttle) re-
quires the knowledge of hygrothermally indu-
ced deflection and stresses. Recent studies in
analysis of plates and shells that are lamina-
tes of fiber-reinforced materials indicate that
the thickness effect(i.e., shear deformation)
on behavior of the plates and shells is more
pronounce than in isotropic plates and shells.

The problem of thermal bending of aniso-
tropic plates was first studied by Pell”, who
derived the equations governing the transverse
deflection of a thin plate. Whintney and
Ashton® studied the effects of moisture on
the elastic response of layered composite
plates. The shear deformation theory that
has been proved to be adequate in predicting
the overall response of laminated anisotropic
plates is that of Whitney?.

The present investigation is concern with
the application of analytical method using
double-Fourier series and higher-order shear
deformation theory to hygrothermal effects of
layered anisotropic composite plates and
shells.

Our models are presented for equations
governing simply supported, rectangular, anti-
symmetric angle-ply, cross-ply plates and
shells under sinusoidal hygrothermal loadings
on multi-layers laminated plates and sflells of
a fiber-reinforced material.

Numerical results for deflections are prese-
nted showing the effect of side-to-thickness
ratio, material anisotropy and comparing with
first-order shear deformation theory and clas-
sical-theory.
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2. GOVERNING EQUATIONS

Consider a laminated shallow shell composed
of N orthotorpic laimnates.

Fig. 1(a) contains a differential element
of a doubly curved shell. Here (&, &, &) de-
note the orthogonal curvilinear coordinates
(or shell coordinates) such that & and &
curves are lines of principle curvature on mi-
dsurface £=0, and ¢ curves (also refered to as
z) are straight lines perpendicular to the mi-
dsurface. The raddi of cuvatures along the &
and & curves are R, and R, respectively. The
reference surface &2 coincides with the midsu-
Irface. The position vector of a point on the
midsurface is denoted by 7, and the position
vector of a point at distance ¢ from the mi-
dsurface is denoted by R[see Fig. 1(b)].

Fig. 1 Geometry of doubly curved shell
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The distance ds between two points on the
midsurface is determined by

(ds)*=dyr - dr = a¥(d &) + di(d &) (1)

where of and of are the midsurface metrices.
The distance dS between pointsrm (&, &, ¢)
and (&+dé&, &+d&, {+dE) is given by
(dSY'=dR - dR = LHdé&)!
+Lid &)+ LidL): (2)

where L,, L, and L; are the Lam’ e coefficie-
nts

L1=a1(1+i), L2=az(1+—§- L=1 3)

7 )

Following the procedure similar to that prese-
nted in [3] for flat plates, we begin with the
following displacement field

ué, & §)=ailLlu+m+cZ¢l+;3a

v(& & ©) :a%LZ” G+ B+ 16,

E(Ely & §):w (4)

Substitutimg Eq. (3) for Eq. (4), one obtains

e, & O=(ltputtarcu+ee
P —f1+-£ 2 4 &8
van & O=(1+F+ st rnrra

wié, & O=w (5)

where (u, v, w) are the displacement (u, v,
w) coordinates, are the displacement of a point
on the middle surface and & and ¢ are the

rotation at {=0 of normals to the midsurface
with respect to the & and & axes, respective-
ly. The particular choice of the displacemet
field in Eq. (5) is dictated by the desire to
represent the transverse shear strains by
quadratic functions of the thickness coordi-
nate, §, and by the requirement that the
transverse normal strain be zero.

The functionrm ¢; and &; will be determined
using the condition that the transverse shear
stresses vanish on the top and bottom surfac-
es of the shell. Substituting ¢, and ; for Eq.
(6), one obtains

we & O=(1+ 3 urta
(%)[ - ® 351

o6 & D=1+ ts

+§3(3§2)[ @“ig—’é

E(Sb EZ) g):w (6)

The constitutive relations with hygrothermal
effects, for a typical layer k£ of a laminate
using the Cartesian coordinates (dx,=ad&, i=
1,2), can be written as?®

Oz Qu Qu Qla —a, AT — EldM
{ ) le sz st ” O.’sz BzAM
Oz, QIG Qze QGG Exy— a’sdT BGAM
Cl-(8: 81 ) @

in which @, and @, B denote the trans-
formed material coefficients. 47, 4M denotes
temperature and moisture rise in the lamina-
tes and is given by®

AT=To+2T,, AM=M+2zM, ®
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The equilibrium equation of the theory can be
obtained from the total potential energy prin-
ciple

sII=0
where ITis the total potential energy,
=1
= fV (.62 + 0y6y+ 0reEyat Oz262:]
+0,yezy]dxdydz—quwdxdy (9)

Therefore, the application of the principle
of total potential energy gives the following
five equations;”

ONL L ONs 3 (nrrs nmy— 0 (NT 4 NH)—
N, 1 N, S (NT+N#) = (NE+NE)=0

oNs , N, __a_ T M __i_ T M_—
o +——¢9y % (N} +N¥) a7z (NT+N¢ 0)

90, . 90, (&P, , P azﬁz) _
ar dy +Cz( o ooy + oy? +a=0

oM,  OMs _ 5 _ 8 (agr T
E + 3y & aI(Ml + M7

—%(MZ+M€‘)=0
OMs ., OM:  ~__ 0 (ayr M
__al‘ +——ay Q o (Mz +M2)
-2 (g + i) =0 (10)

where,
M=BM:—yc:P:, Pi=yc:Pi+aM: (i=1,2,6)
Qi=BQi—rcKi 6;23(1—0’)@—7011{{
(i=zx, y),
a=4/W, c;=c/3, Ni, Mi, P, @ and K, are
the stress resultants.

The equlibrium equation of the classical
laminate theory is obtained by setting

AQ sr=EARREEE =28 H12@ H1=(1999.3)

a=1, =0 and y=0. The equlibrium equation
of the first-order shear deformation theory
can be deduced by setting =0, =1 and y=
0. The equlibrium equation of the higher-order
laminate theory®® can be obtained by setting
a=0, =1 and y=1.

The laminate constitutive equations are rela-
tions between the stress resultants and the

strains.
NY [As By Ei](e NT N™
Mi= B.,' Di;' F,‘,'[i{ - MT - MM
P| |E; Fi Hi]W! PT P~
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where A;; B, Di; etc., are the stiffnesses, de-
fined by

(A«'iy B, Dy, Eij, Fy, Hii):
fm@i,-(l, z, 2, 2%, ', 2°)dz
—h/z
(i=1, 2, 6, 5, 4) (12)

3. HY GROTHERMAL BENDING SOLUTI-
ONS

Here the solutions of equation (10) for simply
supported plates and shells are to be consid-
ered. The following simply supported boundary
conditions are assumed'”

[u(.r, 0)=ulx, b)=v=(0, y)=via, y)=0 ]
Nz, 0)=Ny(x, b)=N{0, y)=Nia, y)=0

cross-ply
{u(O, y)=ula, y)=v(z, 0)=v(zr, b) }
NZ(Oy y)'__NZ(a) y):Nl(xv O)INI(I) b)=0
angle-ply



wx, O)=wx, b)=w(0, y) =wla, y) =0
d(x, 0)=¢ (x, b) =60, y) =¢.(a, y) =0
P,(x, 0) =P,(x, b) =P, 0, y)=Pi(a, ) =0

Mz, 0) =M,(x, b) =M, (0, y) =M, (a, y)=0
(13)

We assumes the following form of spatial
variation of (w, ¢, ¢) that satisfies the
boundary conditions in equation'®

w=3 WafdX, ¥), b=_35 XufdX, V)

b= 3 YmfiX, ) (14)

m, 1

The variation of u, v, Ty, T\, M, and M, is
different for cross-ply and antisymmetric angle
-ply laminates. For cross-ply laminates,

u:m$=1U"mf2(X’ Y)y v Zmilvmnfl(X, Y)

T=Ty" (X, Y), T=T"f{X, ¥)

M=My"f(X, Y), Mi=M7"f{X, Y) (15)

for antisymmetric angle-ply laminates,

u= 3 UnfiX, V), v= 3 VmfdX, ¥) (16)
T=Tsf{X, ¥), =TI (X, Y),
M=My"f{X, Y), Mi=M7"f{(X, ¥)

or

To=TMf(X, V), T.=T7"f(X, Y),
MFMS"%(X, Y), MIZM’IMfA!(Xy Y)

where

(X, Y)=sinax cosBy,
fAX, Y)=cosax sinBy,
£(X, Y)=sinax sinfy,

ro
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f(X, Y)=cosax cosfy and
a=mn/a, f=nx/b.

Substituting equation (14)-(16) for equation
(10), and collecting the coefficients, one obta-
ins

[Cill a}={F}—{FT}—{F"} (17)

matrix [C;] is the coefficient matrix, {A}=
{UnV oW s X oY wal™, {F} is the force vector,
{F}" and {F*} are the hygrothermal force vec-
tor .

4. NUMERICAL EXAMPLES

For illustrative purposes, the hygrothermal
deflection has been calculated for cross-ply and
various angle-ply laminates. The Young’s moduli,
shear moduli, Poisson’s ratio, and coefficints of
hygrothermal expansion for each lamina are ar-
bitrarily taken to be, respectively,'”

E\=25F;, Gu=Gu=0.5E:, Gx=0.2E,
E;=1.0GPa, a/t=10(a, b=1m)
a=1.0x10"%/°C, ¢,=3.0x107/°C

=025 as)

Unless otherwise stated, the following nondi-
mensional deflections and stresses have been
used throughout the calculations:

w=w(a/2, b/2)10/(aT,b%)
51201(0/2, b/2, —t/Z)lO/(melEz)
a,=—a,a/2, b/2, t/2)10/(baiT \E2) (19)

The laminated plate is composed of a finite
number of layers of uniform thickness, as
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shown in Fig. 2.

To validate the derived equations, the obtai-
ned thermal deflections and stresses of simply
supported isotropic and cross-ply plates subje-
cted to a uniform temperature increase are
compared with these of Khdeir and Reddy®
and Reddy” in Table 1-2. They are in excellent
agreement. Fig. 3. consider an antisymmetric
laminate having different ply angles in succes-
sive layers and shows the influence of ply
angle & on thermal deflection for certain fixed
value (£45°) of 6. Fig. 4. shows the influence
of ply angle @ on the thermal deflection for
angle-ply laminates. Result are presented for
plates of four and eight layers. The effect

Fig. 2 Antisymmetric angle-ply
construction

laminated plate

of plate thickness on the thermal deflection
for square laminates having ply angle 45°/-
45° /45° /-45° is illustrated in Fig. 5. For the

Table 1 Thermal deflection » for isotropic and laminated plates

Angle a/t CLPT (ref. 5) FSDT (ref. 5) TSDT (ref. 5) Present
5 1.0312 1.0721 1.0711 1.0710701
0°
10 1.0312 1.0440 1.0439 1.0438845
5 1.1504 1.1604 1.1430 1.1429511
0°/90°
10 1.1504 1.1504 1.1485 1.1148480
5 1.0312 1.0763 1.0874 1.0873640
0 °/90°/0°
10 1.0312 1.0460 1.0499 1.0498593
5 - - - 0.6482121
45° /-45° /45° /-45°
10 - - - 0.6326718
Table 2 Thermal stresses 4., o, for cross-ply laminated plates
CLPT (ref. 7) FSDT (ref. 7) HSDT (ref. 7) present
Angle a/t — — — — — — — —
O; Oy O 0, 0: 0y 0x a,
5 - -0.6148 - -0.6148 - -0.6846 -0.5846 | -0.5846
0°/90°
10 - -0.3074 - -0.3074 - -0.3036 -0.3036 | -0.3036
5 0.0526 - 0.4072 - 0.1154 - 0.1154 1.8775
0°/90°/0°
10 | 0.0263 - 0.0847 - 0.0372 - 0.0372 0.9738
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2.0 — Effect of Ply Angle
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Fig. 3 Effect of ply angle on the thermal deflec—
tion

cases considered it is evident that the thermal
deflection predicted by the first-order shear
deformation theory is smaller than that calcu-
lated according to the higher-order shear de-
formation theory,; the different are particularly
significant for a/t<10. Fig. 6. shows the inﬂu-
ence of modulus ratio E;/E; upon the thermal
deflection. It is observed that the thermal de-
flection decreases rapidly as the modulus ratio
increases.

Next, the cross-ply laminated shell is-com-
posed of a finite number of layers of uniform
thickness, as shown in Fig. 7.

1.3
Effect of Ply Orlention
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Fig. 4 Effect of ply oriention on the thermal de—
flection
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0.72 Effect of Side to Thickness Ratlo
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thermal deflection
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Effect of elastic moduli ratio on the thermal
deflection

7 Cross-ply laminated shell construction
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Fig. 8 and Fig. 9. contain plots of center
line (Y=b/2) deflections w and u, w, ¢ for
plate and shell. A comparison of the center
transverse deflection of the laminated plates
and shells is presented in Fig. 8. Fig. 8 shows
the influence of radius ratio R/a upon the
thermal deflection. It is observed that the
thermal deflection decreases as the radius
ratio increases. Fig. 9. shows the influence of
thermal coefficients upon the center line de-
flections u, w, ¢, Fig. 10. shows the influence
of thermal and hygroscopic coefficients upon
the center line deflections v, w, ¢,.. The mathe-
matical formulations governing hygrothermal
loading are analogous, generalization of the

1.2

0.8 —

0.4

PLATES and SHELLS
4 —@— 0/90/0/90, HSDT

—ll— 0/90:0/90, HSDY, Ria =5

THERMAL DEFLECTION
1

0.0 T T T T T T T
0.00 0.25 0.50 0.75 1.00
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Fig. 8 Thermal deflection of laminated plates and

shells
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Fig. 9 Thermal deflection of cross-ply laminated
shells
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given thermoelastic solutions to thermoelastic
situations is straightforward.

Fig. 11-12. shows the distribution of nondi-
mensionalized maximum normal stressrm o,by
side-to-thickness ratio a/t. Fig. 11 contains
two layers laminated composite plate and Fig.
12 contains the three layers plate. Fig. 11-12.
shows the influence of side-to-thickness ratio
a/t upon the thermal stress. It is observed
that the thermal stress increases as the side-
to-thickness ratio decreases. Because of higher
-order shear deformation theory, the stress
distribution of a/t=10 is cubic variation. Fig.
13. shows the difference of symmetric cross-
ply and antisymmetric cross-ply. At the top of
the antisymmetric cross-ply laminated plates
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Fig. 10 Hygrothermal effect of angle-ply plates
on the thermal deflection
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Fig. 11 Normal stress g, distribution by aft ratio



