six zzo dF 45l 2

o2t

CH

o

Large Deflection of Subsea Pipeline due to One Point Lifting
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Abstract

A numerical method for solving large deflections of elasticas to general structures and offshore
pipelines is investigated. The method is based on finite element analysis using intrinsic coordinates in
which element stiffness is independent of element orientation and the displacement vector is expressed
in terms of nodal values of cross-sectional rotation. The generation of the vector of integrating coeffi-
cients for numerical integration adopts quadrature method, which is subsequently assembled into quad-
rature matrix. The transformations that are required from intrinsic to Cartesian coordinates affect only
the load vector in the equilibrium equation. From this technique, significant computational advantages
can be expected from the intrinsic coordinate formulation, particularly for large deflection problems.
The method is applied to analyze the offshore pipeline when lifted by a single point.
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1. INTRODUCTION

Offshore structures including subsea pipeline
are subjected to external loads mainly caused
by environment in the installed site. Generally
the major loads to offshore structures are
from wave, current and wind. Since offshore
structures are to be functional during design
life, they are designed to sustain continuous
stresses in the operation period. The wave
load is characterized as cyclic load and the
current and wind loads are not linear. What-
ever the type of loads are, the structures are
designed to permit the external loads within
the allowable strain. The allowable strain
should be inside the elastic deflection range.

Offshore pipelines are subjected to current
and wave induced forces after installation.
The stress and deflection of subsea pipeline in
contact with seabed are not significant. How-
ever, offshore pipelines are experienced with
large deflections during installation. Large de-
flections also can occur to large offshore
structures like platforms, mono—podé in relati-
vely deep water. The pipelines under large
deflection and with small stain are investigat-
ed in the paper that are defined as a classical
elastica problem where axial and shear defor-
mations are neglected. The equations for large
deflection are nonlinear and the length of the
suspended pipeline during installation is not
known a priori. Numerical FEM (finite element
method) are often used to solve these prob-
lems. FEM wusually refers the load-displace-
ment interaction to a Cartesian coordinate
system. In this paper, the displacement field
specified in terms of cross sectional rotation
¥(s) is applied. The s is measured along the
deformed axis of an element. This method is
explored for a variety of elastica examples,
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including pipeline problems.

The vector of integrating coefficients for
numerical integration is generated with quad-
rature method, which is subsequently assem-
bled into quadrature. matrix. Considering the
fact that the load vector in the equilibrium
equation is affected in the transformations
from intrinsic to Cartesian coordinates, a
quadrature matrix can be originated. From
this technique, significant computational adva-
ntages can be obtained from the intrinsic co-
ordinate formulation, especially for large de-
flection problems. The technique is applied to
analyze the offshore pipeline as lifted by a
single point.

2. THE FINITE ELEMENT FORMULA -
TION AND EQUILIBRIUM EQUATION

The present development is based on the
assumption that the element is elastic in
bending and can undergo large displacements
with small strain. In this approach, axial and
shear deformations are neglected by Frisch-
Fay?. The displacement field of an element is
specified in terms of the cross sectional rota-
tion ¥(s), where s is measured along the de-
formed axis of the element. The coordinates
(s, ¥) are referred herein as an intrinsic co-
ordinates by Wang?.

The strain energy due to bending, U° of an
element along length is :

v~ %’[ﬂ—f]zds M

In equation (1), EI represents a flexural
rigidity. The displacement field ¥(s) is de-



fined by a continuous polynomial, so that the
rotations within any element may be interpo-
lated from the nodal values on that element.
Nodes are positioned at each end of an ele-
ment. The quality of nodal values will satisfy
inter-element compatibility. A two-node ele-
ment is therefore the minimum configuration
to satisfy compatibility. That element may be
called a linear element, since the rotation var-
Jies linearly. Additional internal nodes of rota-
tion can also be generated within the element
for more accurate representation of displace-
ment field. In this paper, a three-node ele-
ment is called as a quadratic element and a
four-node element is a cubic element.

The polynomial Z(s) may be expressed as
a Lagrangian interpolation polynomial ¥(s)=
[81{6), where [Al is the coefficient function
and {6} the vendor of nodal rotations. Substi-
tuting Lagrangian interpolation polynomial
into (1) gives:

where the element matrix [K] represents the
integral term. The [K] matrices, for the linear,
quadratic and cubic elements, respectively,

are :
E1 1)
{1-1 1
7 —8 1
EL 15 g
31
sym 7
3.7 - —4.725 1.35 —0.325
EI 10.8 —7.425 1.35 3)
i 10.8 —4.725
sym 3.7
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The strain energy of an elastica is the sum
of the strain energies of component elements,

ie U=2Ue=%{6}T[K]{0}, where {6) and [K]

are assembled from the element displacement
vectors and [K]| matrices respectively. The
work product, W, due to external point loads,
P, uniformly distributed load, w and a mo-
ment, M,, may be expressed as:

W=3Pd+ f wy ds+M.6, (4)

where, d; is the conjugate displacement and v
the vertical displacement. If the load P; is re-
solved horizontally and vertically, with ¢ the
angle of inclination of P; equation (4) can be
expressed as,

W= 3 Picosdu+ SPsindvi+w f vds+ M6,  (5)

where u; is the conjugate horizontal displace-

ment. Now,
W= (cos¥—1)ds= | cos®¥ ds—s: (6)
/ J
and
v,= | sin® ds (7
J

Such integrals can be evaluated numerically,
using nodal values of the integrand.

[r)ds=1c, Dl ®)

where [C(0, {)] is a vector of coefficient,
depending on i, and {f} is the wvector of
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nodal values of f(s). The calculation of the
vector [C(0, i)] for the quadratic element is

discussed as follows:

For the case of quadratic elements dis-
cussed in this paper, consider nodes O to n

where n is even. Let
l.
SZj—l_Szi—ZZSz,-_Szj—lz?’ 9)

Based on a parabolic approximation of the in-
tegral f(s),

[ rs)as=125-2,25-1)

S2j-2

= 21—2[5](2;'—2 +8f2-1— fz;']

Tf(S)ds=I(21'—2,2j)

S2j-2

x%[fzi—z‘i“ifzi—l"f‘fzj] 1o,

It 10, k)= f f(s)ds, then the integral approxi-

mations are,

1(0,2i —1)=1(0,25 - 2)+ (25 — 2,27 — 1)
=[C(0,27 - DS}
1(0,2))=1(0,25 —2) + I(25 — 2,27)

=[C(0, 2/))){7} (11

Details on generating the integrating coeffici-
ents for linear and cubic elements can be
found in Ngiam®. Using these integrating vec-
tors and letting [D]=[C(0, )], equations (6)
and (7) become:
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w=[D[{cos8} —s:

vi=[Di]{sin8} (12)

The term f vds in () can also be evaluated

numerically,

Yvds:[C(O, N v}

0

=[C(0, N)KIDilisingH

=[E]{sins} (13)

Substituting (12) and (13) into (5),

W =2XPcos¢{[D:l{cosb}—s;)
+ 3 Psing[ D/){sing} +w[El{sing} + M. 6,

=[G cos} +[H{sind} + M.8.+ constant
(14)

where [G] and [H] are coefficient vectors. It
will be noted that W is a linear function of
{sin 6} and {cos #} for any loading. The total
potential energy of the system is I=U—-W. C-
onsidering a variation &8I, it can be shown
that for an elastic system, the equilibrium
state corresponds to a minimum in the total
potential energy as shown in Bathe et al.?.
Hence, after partial differentiation the equilib-

rium equation is:

(Ko} —{Q}=0 (15)

where {Q} is the load vector which is obtai-
ned by partial differentiation of (14) with re-
spect to 6.



Q.=Gsin+ Hicosb,+ M,6,; (16)

For a structural systemmn where lengths of
members are usually given and fixed, the [K]
in (15) is constant and symmetric, and only
the -load vector is a function of nodal rotatio-
ns, {f}. Consequently, this will offer signifi-
cant reduction of computational effort in the
repeated solutions required for non-linear

problems.

3. NUMERICAL EXAMPLE
Single Point Lift of a Continuous Pipeline

Lifting a continuous pipeline is very impor-
tant and significant problem in repair, tie-in
and installation of pipelines. Depending on
water depth and pipe specification, the allo-
wable lifting height is to be decided. At any
case, the applied stress should be within allo-
wable range. For tie-in operation, the pipeline
should be lifted enough to provide sufficient
clearance for pipeline welding.

In the analysis, a pipeline resting on a level
at rigid seabed is lifted by a vertical force,
2P. 1t is assumed that the pipeline will slide
without frictional resistance. Th curvature of
the pipeline at seabed lift-off point equals
zero. For small deflections, the pipeline lifted
length, 2L, the lifted height at lift point, d
and the corresponding moment, M, can be

shown to be as follows:

3P ., wl' ., _wl
L=% dagrr s M= an

A=F o283

b

=4

For large deflections, the numerical solution
based on intrinsic coordinate elements consid-
ers only half of lifted pipeline due to symme-
try. Boundary conditions of ¥,=¥,=0 can be
used as constraint equations. Corresponding

. Lagrangian multipliers are M, and M,. Using

the lift off point at seabed of 0 as the origin,
equilibrium equations are obtained after par-
tial differentiation of total potential energy
function with respect to nodal rotations as,

K&~ (wE+ PC:)cos¥;

+ Mobsi+ Mubui=0 (18)
¥,=0 (19)
¥,=0 (20)

where i=j=0, 1, 2, ..., n. Equilibrium equati-
ons plus a boundary condition of M=0 con-
stitute a set of n+4 equations, represented by

R, My, M., L)=0 ;

k=0,1,2, .., n+3 21

For an approximate solution, the values of
R, are known as residuals. The Newton-Ra-
phson procedure is applied for the solution of
residual equations and it requires starting val-
ues of the variables. Since the pipeline is lift-
ed gradually from a flat seabed, the starting
values for nodal rotations may be assumed
zero. The starting values of lifted length, L
and the moment, M, can be established based
on the small deflection solutions in (17).

The dimensionless terms of characteristic
length, lifted length, lift force, moment and
lift height are considered in the solution,
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Y=-- (22)
L

Large deflection problems have been previ-
ously solved by Kooi and Kuipers” using a fi-
nite difference method. Some of solutions usi-
ng quadratic elements are presented in Table
1 and compared with theirs. In Table 1, the
results presented are based on a dimensionless
lift force 2P=20, which is the greatest load
adopted by Kooi and Kuipers®. The deflection
due to this load is extremely large. The resu-
Its are obtained by quadratic elements of
equal length and four incremental load steps.

Kooi and Kuipers” obtained the values
quoted above by Richardson extrapolation,
from solutions using 333 and 653 unknowns.
Very similar results have been obtained here

Table 1 Singlf point lift of a pipeline (dimensio-
nless lift force of 20)

half lifted bending
number of length height moment
elements _ _ o
L Y M,
4 11.258732 9.763271 5.914088
8 11.199737 9.733902 4491175
16 11.202644 9.806287 4.346398
32 11.202700 9.801202 4.416090
Kooi
& Kuipers? 11.202701 | 9.811415 4.431179
Linear 15 703.125 375
theory
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using only 32 elements or 68 equations. Their
values of 11.20300 and 11.202701 for the di-
mensionless half length using 333 and 653
equations respectively, a difference of 0.0003.
It can be noted that the ‘difference is less
than 0.0001 for the solutions using 16 and 32
elements (see Table 1) or 36 and 68 unkno-
wns respectively. Also it was reported by Ngi-
am® that for the dimensionless lift forces
smaller than 4.0, the solutions are reasonably
consistent with those based on linear theory
equations.

The schematic diagram of applied forces on
subsea pipeline segment is as shown in Figure
1 which shows moment, force, angle, weight
and segment length. The notation in Figure 1
is not explained in detail since it is self-ex-
Figure 2 modeling

plainable. shows the

—» X

Fig. 1 Applied forces on subsea pipeline
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Fig. 2 Single point lift of a continuous pipeline



scheme for continuos pipeline being lifted by
a single point with a 2P force. The deflected
profiles of the pipeline under the dimensionle-
ss lift force of 5, 10, 15 and 20 are presented
in Figure 3. Plots of the dimensionless lift
force against the dimensionless bending mo-
ment at the lift point are shown in Figure 4
where P stands for lifting force and Mn rep-
resents bending moment. It shows clearly the
difference between large deflection solution
and linear solution. It explains that to obtain
the accurate solution for non-linear case such
as large deflection problems, the linear theory
is not recommended. The lifting lengths sub-
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Fig. 3 Deflected gometry of a pipeline
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Fig. 4 Dimensionless lift force vs. bending mo-
ment at lift point
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Fig. 5 Dimensionless lift force vs. lifted length

Jjected to lifting forces are indicated in Figure
5. As the lifting force increase the difference
in lifted length also grows.

4. CONCLUSIONS

External forces acting on offshore structures
create stress and strain to the members of
the structure. The strain and stress should be
within allowable values in elastic range. For
offshore pipelines, the large deflection is gen-
erated during installation. The large deflection
also occurs to long and large offshore plat-
forms. To resolve this type of large deflection
problems, a new finite element procedure has
been developed and introduced in the paper.
This technique can be effectively applied to
offshore pipelines with the deformation de-
fined in terms of nodal rotations.

Since the element stiffness matrix is inde-
pendent of element orientation, it proved that
the introduced technique could obtain a signi-
ficant computational advantage. It was found
that the only load vector in the equilibrium
equation is affected in the transformation
from Cartesian to intrinsic coordinates.

It shows clearly that there is significant
difference between linear solution and large
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deflection solution. As introduced the paper,
in the range of small lifting force, the differ-
ence in moment and lifting length is relatively
small. However, as the lifting force increases,
the gab also grows. This tendency agrees well
with the results from established solutions for
large deflection of elastica problems.
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